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Abstract. A simple mechanism is presented, based on ant-like agents, for routing

and load balancing in telecommunications networks, following the initial works of

Appleby and Stewart (1994) and Schoonderwoerd et al. (1997). In the present work,

agents are very similar to those proposed by Schoonderwoerd et al. (1997), but are

supplemented with a simplified dynamic programming capability, initially

experimented by Guérin (1997) with more complex agents, which is shown to

significantly improve the network's relaxation and its response to perturbations.
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1. Introduction

1.1 Routing in telecommunications networks

Routing is a mechanism that allows calls to be transmitted from a source to a

destination through a sequence of intermediate switching stations or nodes,

because not all points are directly connected: the cost of completely connecting a

network becomes prohibitive for more than a few nodes. Routing selects routes

that meet the objectives and constraints set by the user traffic and the network, and

therefore determines which network resources are traversed by which user traffic

(Steenstrup, 1995; Kelly, 1995). Why should routing be (1) dynamic, and (2)

decentralized?

(1) The pathway of a message must be as short as possible. One solution is therefore

to design fixed routing tables such that any two nodes in the network are connected

through the shortest possible path. Designing such routing tables is a simple

optimization problem, which has to be solved when the network topology has been

defined. But traffic conditions are constantly changing, and also the structure of the

network itself may fluctuate (switching stations or connections can fail). The

problems of telecommunications networks is to minimize the number of call

failures in any condition. Because there are usually many possible pathways for one

message to go from a given node to another node, it is possible in principle to make

routing algorithms adaptive enough to overcome local congestions: calls can be

rerouted to nodes that are less congested, or have spare capacity. If there is a sudden

burst of activity, or if one node becomes the destination or the emitter of a large

number of calls, rerouting becomes crucial. Static routing, whereby routing remains

fixed independent of the current states of the network and user traffic, is therefore

almost never implemented: most routing schemes respond in some way to

changes in network or user traffic state. But there exists a wide spectrum of

dynamic routing systems, which vary dramatically in their responsiveness, speed

of response and in the types of changes they respond to (Steenstrup, 1995): some

routing systems can be seen as "quasistatic", because routing is modified only i n

response to exceptional events (link or switch failure), and/or on a long time scale,

while other routing systems are highly dynamic and autonomously update traffic

routing in real time in response to perceived changes in user and network state.
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Tigthly coupled with dynamic routing is load balancing, which is the construction

of call-routing schemes that successfully distribute the changing load over the

system and minimize lost calls. Load balancing makes it possible to relieve actual

or potential local congestion by routing calls via parts of the network that have

spare capacity. Dynamic routing and load balancing require more computational

resources than static or quasistatic routing. It relies on active participation of by

entities within the network to measure user traffic, network state and performance,

and to compute routes.

(2) Most routing algorithms today are centralized, with routing tables at switching

stations being updated by a central controller at regular intervals. But:

• The controller needs current knowledge about the entire system, necessitating

communications links from every part of the system to the controller.

• Central control mechanisms scale badly.

• Failure of the controller leads to failure of the whole system.

• Telecommunications networks are distributed, extended, dynamic, highly

unpredictable systems, and central control may simply not be appropriate.

• A routing system's responsiveness to state changes depends upon the load on the

central controller and the distance between the central controller and the portion of

the network requiring adaptation.

• Centrally controlled systems might have to be owned by a single authority.

• By contrast, with a decentralized implementation of the routing function,

multiple entities function independently and exchange information, providing

fault tolerance. Moreover, the routing computational load is spread among the

multiple entities.

1.2 Agent-based routing and network control

The idea that ant-like agents, or "mobile software agents", could be used for

network control in telecommunications has been introduced by Appleby and

Steward (1994; Geake, 1994), in a paper that poses the problems clearly but remains

vague as regards actual implementation. Schoonderwoerd et al. (1997) have

proposed an interesting version of Appleby and Steward's (1994) work, where they

use simple agents that modify the routing tables of every node in the network.
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Their work, being described in more detail, is somewhat easier to reproduce, and

contains a set of nice ideas. Routing and load balancing mechanisms based on their

algorithm may conceivably be used in some networks in the near future, if it can be

proved, one way or another, that any network condition can be satisfactorily dealt

with. New approaches to routing require intensive testing.

1.3 Ant-like agents

Schoonderwoerd et al.'s (1997) work relies on the ability of social insects to solve

problems, sometimes difficult problems, in a distributed way, without any central

control, on the basis on local information. Social insects also often exhibit flexibility

(they can respond to internal perturbations and external challenges) and robustness

(failure of one or several individuals usually does not jeopardize a colony's

functioning). Given these properties and the impressive ecological success of social

insects (Wilson, 1971), it does not seem unreasonable to try to transfer current

knowledge about how insect societies function into the context of engineering and

distributed artificial intelligence. This approach is similar to other approaches

consisting in imitating the way "nature" (that is, physical or biological systems)

solves problems (Bounds, 1987; Farmer et al., 1986). Another possible and

apparently very promising pathway is to use economic or financial metaphors to

solve problems (Kephart et al., 1989; Huberman et al., 1997).

Recent research in ethology suggests that self-organization is a major component of

a wide range of collective phenomena in social insects (Deneubourg & Goss, 1989;

Bonabeau et al., 1997a). Theories of self-organization, originally developed in the

context of physics and chemistry to describe the emergence of macroscopic patterns

out of processes and interactions defined at the microscopic level, can be extended

to social insects to show that complex collective behavior may emerge from

interactions among individuals that exhibit simple behavior. A good illustration of

the self-organized, distributed problem-solving ability of social insects is the binary

bridge experiment (Beckers et al., 1990; Deneubourg & Goss, 1989): in experiments

with the ant Linepithema humile , a food source is separated from the nest by a

bridge with two branches A and B, with branch B being r times longer than branch

A (Fig. 1a). It is observed that in most experiments, the short branch is selected by



5

the colony if r is sufficiently large (r=2 in Fig. 1b). This is because these ants have a

trail-laying/trail-following behavior: individual ants lay a chemical substance, a

pheromone, which attracts other ants. The first ants returning to the nest from the

food source take the shorter path twice (from the nest to the source and back), and

therefore influence outgoing ants towards the short branch which is initially more

strongly marked. If, however, the short branch is presented to the colony after the

long branch, the short path will not be selected because the long branch is already

marked with pheromone: the colony does not exhibit flexibility (Fig. 1b). This

problem can be overcome in an artificial system, by introducing the pheromone's

lifetime: because pheromone diffuses and evaporates, it is more difficult to

maintain a stable pheromone trail on a long path than on a short path. In this way,

the short branch can be selected even if presented after the long branch. In the real

world, although pheromone concentrations do decay, the lifetime of pheromones

is usually so large that it cannot allow such a flexibility: this is a case where there is

a clear divergence from biological reality, but solving problems and understanding

nature are two activities which have their own criteria of success.

 Figure 1

a. Experimental setup and drawings of the selection of the short branches by a colony of L. humile

respectively 4 and 8 minutes after the bridge was placed. b. Distribution of the percentage of ants tha t

selected the shorter branch over all experiments (around 20-30 experiments). The longer branch is r

times longer than the short branch. The second graph (n=18, r=2) corresponds to an experiment in

which the short branch is presented to the colony 30 minutes after the long branch: the short branch is

not selected, and the colony remains trapped on the long branch. From Goss et al. (1989).

Taking advantage of this ant-based optimizing principle, Colorni et al. (1991, 1992,

1993), Dorigo et al. (1996), Dorigo and Gambardella (1997; Gambardella & Dorigo,

1995) and Gambardella et al. (1997) have proposed an ingenious optimization

method, the Ant System (or the Ant Colony System, which is more efficient),

which they applied to classical optimization problems, such as the traveling

salesman problem (Lawler et al., 1985), the quadratic assignment problem

(Koopmans et & Beckman, 1957) or the job-shop scheduling problem, with

reasonable success: this method, as a general heuristic, can be compared to

simulated annealing (Kirkpatrick et al., 1983). Others have followed the path, and
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have either extended the original method (Bullnheimer et al., 1997a; Stützle &

Hoos, 1997) or applied ant-based optimization to the vehicle routing problem

(Bullnheimer et al., 1997b), the graph coloring problem (Costa & Hertz, 1997) and

the search of continuous spaces (Bilchev & Parmee, 1995; Wodrich, 1996).

Schoonderwoerd et al.'s (1997; Schoonderwoerd, 1996) application to routing and

load balancing in telecommunications networks is derived from the same

metaphor: however, the formulation of their algorithm, the dynamic properties of

the problem and the highly distributed nature of the underlying system, make this

application original and of special interest. In particular, it is, until now, the only

example where the advantage of using the decentralized functioning of social

insect colonies is (and could be even more) fully exploited.

Other applications based on the functioning of social insect societies include data

analysis (Lumer & Faieta, 1994) and graph clustering (Kuntz et al., 1997) inspired by

cemetery organization in ants (Deneubourg et al., 1991), adaptive task allocation

(Bonabeau et al., 1997b) inspired by the division of labor in social insects (Theraulaz

et al., 1991; Bonabeau et al., 1996), and self-assembly inspired by collective building

in wasps (Theraulaz & Bonabeau, 1995).

1.4 Outline of the paper

The rest of the paper is dedicated to describing and extending the ant-like-agent-

based mechanism introduced by Schoonderwoerd et al. (1997) to include a form a

dynamic programming which makes the agent "smarter".

2. Algorithms

2.1 Original algorithm (Schoonderwoerd et al. (1997))

If there are n nodes in the network, a node   Ni  with k(i) neighbors is characterized

by a routing table   Ri =
  
rl ,m

i[ ]
n−1,k i( )

 that has n-1 rows and k columns: each row

corresponds to a destination node and each column to the next node. 
  
rl ,m

i  gives the

probability that a given message, the destination of which is node   Nl , be routed
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from node   Ni  to node   Nm . Agents update routing tables of nodes viewing their

node of origin as a destination node: links being bidirectional, agents that have a

certain "knowledge" about some portion of the network (where they come from)

modify routing tables of nodes that influence the routing of messages and agents

that have this portion of the network as destination. This avoids agents going back

all the way to their node of origin to update all intermediate routing tables, and

therefore decreases in pinciple the network's agent load.

Agents can be launched from any node in the network at any time. Destination is

selected randomly among all other nodes in the network. The probability of

launching an agent per unit time must be tuned to maximize the performance of

the system. It appears that too few agents are not enough to reach good solutions,

whereas too large a number of agents degrades the performance of the system by

adding noise (a more appropriate way of launching agents would be to generate an

increasing number of agents as the network becomes more and more congested).

The notion of performance of the system here is simply the number of calls that

fail to reach their destinations. Agents go from their source node to their

destination node by moving from node to node. The next node an agent will move

to is selected according to the routing table of its current node. Each visited node's

routing table is updated: more precisely, an agent modifies the row corresponding

to its source node, which is viewed as a destination node. When the agent reaches

its destination node, it updates the local routing table and is deleted from the

network. How are routing tables updated? Let   Ns  be the source node of an agent,

  Nm  the node it just comes from, and   Ni  its current node at time t. The entry 
  
rs,m

i t( )
is reinforced while other entries 

  
rs,l

i t( ) in the same row decay:

  
rs,m

i t + 1( ) =
rs,m

i t( ) + δr

1 + δr
, (1)

  
rs,l

i t + 1( ) =
rs,l

i t( )
1 + δr

, (2)

where   δr is a reinforcement parameter, that depends on the agent's characteristics.

Note that this updating procedure conserves the normalization of 
  
rs,l

i ,

  
rs,l

i

l

∑ = 1, (3)
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if they are initially normalized, so that 
  
rs,l

i  can always be considered as probabilities,

all of which always remain strictly positive. 
  
rs,m

i t( ) is comparatively more

reinforced when it is small (that is, when node m is not on the preferred route to

node s) than when it is large (that is, when node m is on the preferred route to

node s). This is an interesting feature, as it should allow new routes to be

discovered quickly when the preferred route gets congested because established

routing solutions become more easily unstable: there is an exploration/exploitation

tradeoff to be found, for too much instability might not always be desirable (one

way of getting around this problem would be, once again, to increase the number of

agents only when the network is congested, because more agents destabilize

solutions that use congested routes).

The influence   δr of a given agent must depend on how well this agent is

performing. Aging can be used to modulate   δr: if an agent has been waiting a long

time along its route to its destination node, it means that the nodes it has visited

and links it has used are congested, so that   δr should decrease with the agent's age

(measured in time units spent in the network). Aging should in principle be

relative to the length (expressed in time units) of the optimal path from an agent's

source node to its destination. Schoonderwoerd et al. (1997) choose to use absolute

age T, measured in time units spent in the network, and propose

  
δr = a

T
+ b, (4)

where a and b are parameters. Aging is also used in a complementary way: age is

manipulated by delaying agents at congested nodes. Delays result in two effects: (1)

the flow of ants from a congested node to its neighbors is temporarily reduced, so

that entries of the routing tables of neighbors that lead to the congested cannot be

reinforced, and (2) the age of delayed agents increases by definition, so that delayed

ants have less influence on the routing tables of the nodes they reach, if   δr

decreases with age. Schoonderwoerd et al. (1997) suggest that the delay D imposed

on an agent reaching a node with spare capacity S (that is, the percentage of slots left

in the node for new messages) should be given by

   D = c e−S Sc , (5)
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where c is a parameter and   Sc  is a characteristic spare capacity (expressed i n

percentage of the node's capacity), so that a node is considered congested if S>>  Sc .

Finally, one needs to avoid freezing routes in situations that remain static for a

long time and then suddenly change. Finding new routes is facilitated by increased

reinforcement of small entries, but this may be insufficient. Schoonderwoerd et al.

(1997) suggest the addition of a tunable "noise" or "exploration" factor f (0<f<1). At

every node, an agent chooses a purely random path with probability f and chooses

its path according to the node's routing table with probability (1-f). Noise allows to

maintain information about apparently useless routes to give a head start when the

preferred route is blocked. It also allows to rediscover quickly a better route that

appears owing to the release from congestion of a node.

2.2 Agents supplemented with dynamic programming

At each time step, an agent as described by Schoonderwoerd et al. (1997) only

updates the row that corresponds to its source node (viewed as a destination node).

An interesting recent addition by Guérin (1997) introduces updating of all rows

corresponding to all the intermediate nodes visited by the agent, in a way

reminiscent of dynamic progamming: reinforcement of an entry associated with a

given node is discounted by a factor that depends on the agent's age relative to the

time it visited that node. Although Guérin's (1997) method relies on agents that

perform round trips from their source node to their destination node and back, it

can be readily applied to the case of one-way agents. In order to distinguish these

more complex or "smarter" agents from those of Schoonderwoerd et al. (1997), we

call them "smart" agents.

Let   Ni  be the ith node visited by an agent on its way to its destination. The agent

updates the rows of all intermediate nodes in   Ni 's routing table. Updating of the

row corresponding to node   Nm  (m<i), the mth visited node, is performed using a

relative age instead of its absolute age. Entry 
  
rm,i−1

i t( )  is reinforced while other

entries 
  
rm,l

i t( )  (l i) in the same row decay:
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rm,i−1

i t + 1( ) =
rm,i−1

i t( ) + δr

1 + δr
(7)

  
rm,l

i t + 1( ) =
rm,l

i t( )
1 + δr

(8)

with

  
δr = a

Ti − Tm

+ b (9)

where   Tm  is the agent's absolute age when reaching node   Nm  and   Ti  its age when

reaching node   Ni . The entries corresponding to nodes visited long ago are weakly

updated, which is expressed in equation (9).  

The ant-based algorithm with "dynamic programming" scheme yields significantly

better performance than without. Figure 2.1 shows the average number of call

failures per 500 steps together with error bars representing the standard deviation

observed over 10 trials of the simulation with identical parameters, the first 500

steps being discarded, after the network has been initialized. The parameters are

identical to those of Schoonderwoerd et al. (1997): we use the 30 node

interconnection network of British Telecom as an example; each node has a

capacity of 40 calls (S=100%); during every time step, an average of one call is

generated, with an average duration of 170 time steps; the probabilities that nodes

be emitters or receivers are uniform in [0.01,0.07] and normalized; generation and

normalization of emission and reception probabilities for all nodes defines a set of

call probabilities, and a change in call probabilities means that new emission and

reception probabilities have been generated (new nodes become more likely to be

emitters or receivers, and others less likely). At initialization, routing tables are

characterized by equiprobable routing (all neighboring nodes are equally likely to be

selected as next node), and there is no message in the network. Messages are routed

independently of the agents' dynamics: when a message reaches a node, it selects

the largest entry in the appropriate row it its current table and is routed towards the

neighboring node corresponding to this largest entry. During the first phase

following initialization (from t=501 to 3000), smart agents perform significantly

better than Schoonderwoerd et al.'s (1997) agents (t-test, df=18, t=3.2, P<0.003);
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during the second phase (t=3001 to 7500), when a stationary state in the dynamics of

call failures has been reached, smart agents also perform significantly better (df=18,

t=3.9, P<0.001), with a level of significance comparable to the one obtained during

the first phase. Figure 2.2 shows the average number of call failures per 500 steps

together with error bars representing the standard deviation observed over 10 trials

of the simulation with identical parameters, the first 500 steps being discarded, after

a change in the call probabilities. Results similar to those obtained after network

initialization are observed: during both phases, smart agents perform significantly

better than simple agents (phase 1: df=18, t=4.1, P<0.001; phase 2: df=18, t=2.3,

P<0.025), but the level of significance is much lower during the second phase,

indicating that smart agents are particularly useful when network conditions are

changing.   

Figure 2.1

Adaptation (500 first steps discarded). Phase 1: from t=501 to 3000, Phase 2: from t=3001 to 7500.

a=0.08, b=0.005, c=80,   Sc =13.3%, f=0.05, node capacity=40 calls.

Figure 2.2

Change in call probabilities (500 first steps discarded). Phase 1: from t=501 to 3000, Phase 2: from

t=3001 to 7500. a=0.08, b=0.005, c=80,   Sc =13.3%, f=0.05, node capacity=40 calls.

3. Discussion: limitations and future work

We have supplemented the agents introduced by Schoonderwoerd et al. (1997) with

a simplified form of dynamic programming, initially suggested by Guérin (1997)

with more complex agents. Analysis of call failures indicates that this addition

improves significantly the performance of the routing scheme, especially when

network traffic is subject to variations. But before this method can actually be

implemented in real communications networks, some limitations have to be

overcome. First, the model network used in this paper is obviously an

oversimplification of reality: the method has to be tested on more realistic, and

therefore more complex, network models. But this points to the problem of
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analyzing the routing's behavior. Routing algorithms are generally difficult to

analyze mathematically, especially when the underlying network is complex

and/or not fully connected: for example, the properties of the dynamic alternative

routing method (Kelly, 1995) could be obtained analytically only for fully connected

networks. It is crucial for "self-organizing" algorithms, such as the one presented i n

this paper, where control by humans can only be limited, to be able to prove that

they are not going to fall apart in some, possibly pathological but still potential,

specific configuration. For example, it would be good to be sure that messages

cannot become trapped in infinite cycles without ever reaching their destination.

One also needs to have a clear understanding of the limits and constraints of

communications networks: for example, if there are sufficient computational

power and spare capacity in the network to launch a large number of complex

agents without affecting traffic, why bother to design simple agents?   
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