Empirical Study of Particle Swarm Optimization

Yuhui Shi
EDS Indianapolis Technology Center
12400 N. Meridian Street
Carmel, IN 46032
Yuhui.shi@mail . eds.com
Phone: 317-705-6740
Fax: 317-705-6710

Abstract- In this paper, we empirically study the
performance of the particle swarm optimizer (PSO).
Four different benchmark functions with asymmetric
initial range settings are selected as testing functions.
The experimental results illustrate the advantages and
disadvantages of the PSO. Under all the testing cases,
the PSO always converges very quickly towards the
optimal positions but may slow its convergence speed
when it is near a minimum. Nevertheless, the
experimental results show that the PSO is a promising
optimization method and a new approach is suggested to
improve PSO’s performance near the optima, such as
using an adaptive inertia weight.

1 Introduction

Through cooperation and competition among the
population, population-based optimization approaches often
can find very good solutions efficiently and effectively.
Most of the population based search approaches are
motivated by evolution as seen in nature. Four well-known
examples are genetic algorithms [1], evolutionary
programming [2], evolutionary strategies [3] and genetic
programming [4]. Particle swarm optimization (PSO), on
the other hand, is motivated from the simulation of social
behavior. Nevertheless, they all work in the same way, that
is, updating the population of individuals by applying some
kinds of operators according to the fitness information
obtained from the environment so that the individuals of the
population can be expected to move towards better solution
areas.

The PSO algorithm was first introduced by Eberhart and
Kennedy [5, 6, 7, 8]. Instead of using evolutionary
operators to manipulate the individuals, like in other
evolutionary computational algorithms, each individual in
PSO flies in the search space with a velocity which is
dynamically adjusted according to its own flying experience
and its companions’ flying experience. Each individual is
treated as a volume-less particle (a point) in the D-
dimensional search space. The ith particle is represented as

0-7803-5536-9/99/$10.00 ©1999 IEEE

Russell C. Eberhart
Department of Electrical Engineering
Purdue School of Engineering and Technology
799 W. Michigan Street
Indianapolis, IN 46202
Phone: 317-278-0255
Eberhart@engr.iupui.edu

Xi = (X1, Xi2, ... » Xip). The best previous position (the
position giving the best fitness value) of the ith particle is
recorded and represented as P; = (pi1, pPi2, --- , Pip). The
index of the best particle among all the particles in the
population is represented by the symbol g. The rate of the
position change (velocity) for particle i is represented as V;
= (Vi1, Viz, -.- » Vip)- The particles are manipulated according
to the following equation:

Via=Vig+ ¢ *rand() * (pig~Xia) +
¢z * Rand() * (pys —Xia) (1a)
Xid = Xia + Vig (1b)

where ¢, and c, are two positive constants, and rand() and
Rand() are two random functions in the range [0,1].

Unlike in genetic algorithms, evolutionary programming,
and evolution strategies, in PSO, the selection operation is
not performed [9, 10]. All particles in PSO are kept as
members of the population through the course of the run (a
run is defined as the total number of generations of the
evolutionary algorithms prior to termination) [9]. It is the
velocity of the particle which is updated according to its
own previous best position and the previous best position of
its companions. The particles fly with the updated
velocities. PSO is the only evolutionary algorithm that
does not implement survival of the fittest [9].

By considering equation (1b) as similar to a mutation
operation, the PSO algorithm is similar to the evolutionary
programming algorithm since neither algorithm performs a
crossover operation. In evolutionary programming, each
individual is mutated by adding a random function (the most
commonly used random function is either a Gaussian or
Cauchy function) {11, 12}, while in PSO each particle
(individual) is updated according to its own flying
experience and the group’s flying experience. In other
words, at each generation, each particle in PSO can only fly
in a limited number of directions which are expected to be
good areas to fly toward according to the group’s
experience; while in evolutionary programming, each
individual has the possibility to “fly” in any direction. That

1945

is to say, PSO performs a kind of “mutation” operation with
a “conscience” s[13]. Theoretically speaking, evolutionary
programming has more chance to “fly” into an area around
the global optimal position while the PSO has more chance
to “fly” into the better solution areas more quickly when the
“conscience” provides helpful information.

In evolutionary programming, the balance between the
global and local search is adjusted through adapting the
variance (strategy parameter) of the Gaussian random
function or step size, which can even be encoded into the
chromosomes to undergo evolution itself. In PSO, a
parameter called inertia weight is brought in for balancing
the global and local search and equation (1) is changed to:

Vig = W*vig + ¢ * rand() * (pia —xia) +
¢ * Rand() * (pya ~ xia) (2a)
Xig = Xig * Vig (2b)

where w is the inertia weight [13, 14]. The inertia weight
has characteristics that are reminiscent of the temperature
parameter in the simulated annealing [9]. A large inertia
weight facilitates a global search while a small inertia
weight facilitates a local search. By linearly decreasing the
inertia weight from a relatively large value to a small value
through the course of the PSO run, the PSO tends to have
more global search ability at the beginning of the run while
having more local search ability near the end of the run.
The simulation results on the benchmark problem of
Schaffer’s F6 function illustrate that an inertia weight
starting with a value close to 1 and linearly decreasing to 0.4
through the course of the run will give the PSO the best
performance compared with all fixed inertia weight settings

[13].
In [15], Angeline compared the philosophy and
performance differences between the evolutionary

programming algorithm and PSO algorithm by conducting
experiments on four non-linear functions well studied in the
evolutionary optimization literature. The evolutionary
programming algorithm employed is the one with a
combination of Gaussian and Cauchy functions as strategy
parameters’ update function. This version of algorithm was
first reported in {12] and has been shown to be superior to
other update functions for the strategy parameters [16]. The
PSO algorithm employed is the original one described by
equation (la) and (1b). Through adapting the strategy
parameters to adjust the mutation step size, the evolutionary
programming algorithm employed ideally has the ability to
fine tune the search area around the optima. Since only the
original version of PSO algorithm is involved in the
comparison, no mechanisms are utilized in the PSO to
adjust its velocity step size, therefore the PSO may lack
some fine tuning ability. The experimental results reported
in [15] shows that generally speaking the PSO has a quick
convergence ability but a slow fine tuning ability while the
evolutionary programming algorithm is the opposite. From
the results, it can be excepted that by employing a
dynamically adapting velocity step size approach, the PSO

performance can be improved to have better fine tuning
ability similar to that of evolutionary programming.

By introducing a linearly decreasing inertia weight into
the original version of PSO, the performance of PSO has
been greatly improved through experimental study on the
benchmark problem of Schaffer’s F6 function [13, 14]. In
order to further illustrate the effect of this linearly
decreasing inertia weight, in this paper experimental results
with the four non-linear testing functions used in [15] are
reported and discussed.

2 Experimental Setting
For comparison, four non-linear functions used in [15] are

used here. The first function is the Sphere function
described by equation (3):

Sl =Y ©)

where X = [Xy, X, ..., X, | IS an n-dimensional real-valued
vector. The second function is the Rosenbrock function
described by equation (4):

) =Y 000k, ~ 52 + (5 =1 (@)

The third function is the generalized Rastrigrin function
described by equation (5):

f(x)= i(xf ~10cos(2,) +10) (5)

The last function is the generalized Griewank function
described by equation (6):

L&,
1) =005 2% —g]cos(%m (6)

Following the suggestion in [11] and for the purpose of
comparison, the asymmetric initialization method used in
[15] is adopted here for population initialization. Table 1
lists the initialization ranges of the four functions.

Table 1: Asymmetric initialization ranges.

Function | Asymmetric Initialization Range
fo (50,100)"

f) (15,30)"

f, (2.56,5.12)"

f3 (300,600)"

As in [15], for each function, three different dimension
sizes are tested. They are dimension sizes: 10, 20 and 30.

1946

The maximum number of generations is set as 1000, 1500
and 2000 corresponding to the dimensions 10, 20 and 30,
respectively. In order to investigate whether the PSO
algorithm scales well or not, different population sizes are
used for each function with different dimensions. They are
population sizes of 20, 40, 80, and 160. A linearly
decreasing inertia weight is used which starts at 0.9 and
ends at 0.4, with ¢,=2 and ¢,=2. V. and X, are set to be
equal and their values for each function are listed in Table 2.
A total of 50 runs for each experimental setting are
conducted.

Table 2: V. and X, values for each function.

Function | Viax = Xinax
f 100

f 100

f, 10

f; 600

3 Experimental Results and Discussion

Figures 1 to 4 show the results for the sphere function with
four different population sizes, respectively. Table 3 lists
the mean fitness values of the best particle found for the 50
runs for the four functions. It is easy to see for the Sphere
function, that PSO can find the optima very fast and the
PSO algorithm also scales very well. In Table 3, since only
four digits after the decimal are recorded, the values shown
here are also zeros which can be seen from the Figures.
Figures 5 to 8 show the results for the Rosenbrock
function with four different population sizes, respectively.
Figures 9 to 12 show the results for the generalized
Rastrigrin function with four different population sizes,
respectively. Figures 13 to 16 show the results for the

Table 4: Mean fitness values for the Rosenbrock function.

Popu. Size | Dimension | Generation | Mean Best Fitness
20 10 1000 96.1715
20 1500 214.6764
30 2000 316.4468
40 10 1000 70.2139
20 1500 180.9671
30 2000 299.7061
80 10 1000 36.2945
20 1500 87.2802
30 2000 205.5596
160 10 1000 24.4477
20 1500 72.8190
30 2000 131.5866

Table 5: Mean fitness values for the generalized

Rastrigrin function.
Popu. Size | Dimension | Generation | Mean Best Fitness
20 10 1000 5.5572
20 1500 22.8892
30 2000 47.2941
40 10 1000 3.5623
20 1500 16.3504
30 2000 38.5250
80 10 1000 2.5379
20 1500 13.4263
30 2000 29.3063
160 10 1000 1.4943
20 1500 10.3696
30 2000 24.0864

Table 6: Mean fitness values for the generalized
Griewank function.

generalized Griewank function with four different | Popu.Size | Dimension | Generation | Mean Best Fitness
population sizes_ 20 10 1000 00919
Tables 4 to 6 list the mean fitness values of the best 20 1500 0.0303
particle found for the 50 runs for the other three functions, 30 2000 0.0182
respectively. 40 10 1000 0.0862
20 1500 0.0286
Table 3: The mean fitness values for the sphere function. 30 2000 0.0127
Popu. Size | Dimension | Generation | Mean Best Fitness |{ 80 10 1000 0.0760
20 10 1000 0.0000 20 1500 0.0288
20 1500 0.0000 30 2000 0.0128
30 2000 0.0000 160 10 1000 0.0628
40 10 1000 0.0000 20 1500 0.0300
20 1500 0.0000 30 2000 0.0127
30 2000 0.0000
80 10 1000 0.0000
20 1500 0.0000 By looking at the shapes of the curves in all the figures, it
30 2000 0.0000 is easy to see that the PSO converges quickly under all cases
160 10 1000 0.0000 but will slow its convergence speed down when reaching the
20 1500 0.0000 optima. This may be due to the use of the linearly
30 2000 0.0000 decreasing inertia weight. By using the linearly decreasing

inertia weight, the PSO lacks global search ability at the end
of run even when the global search ability is required to

1947

jump out of the local minimum in some cases.
Nevertheless, the results shown illustrate that by using a
linearly decreasing inertia weight, the performance of PSO
can be improved greatly and have better results than that of
both PSO and evolutionary programming reported in [15].
From the figures, it is also clear that the PSO with different
population sizes has almost the similar performance.
Similar to the observation for Sphere function, the PSO
algorithm scales well for all four functions.

4 Conclusion

In this paper, the performance of the PSO algorithm with
linearly decreasing inertia weight has been extensively
investigated by experimental studies of four non-linear
functions well studied in the literature. The experimental
results illustrate that the PSO has the ability to quickly
converge, the performance of PSO is not sensitive to the
population size, and PSO scales well.

The results also illustrate that the PSO may lack global
search ability at the end of a run due to the utilization of a
linearly decreasing inertia weight. The PSO may fail to find
the required optima in cases when the problem to be solved
is too complicated and complex. But to some extent, this
can be overcome by employing a self-adapting strategy for
adjusting the inertia weight.

References

1. Goldberg, D. E. (1989), Genetic Algorithms in Search,
Optimization, and Machine Learning, Reading MA:
Addison-Welsey.

2. Fogel, L. J. (1994), Evolutionary Programming in
Perspective: the Top-down View, in Computational
Intelligence. Imitating Life, JM. Zurada, R. J. Marks II,
and C. J. Robinson, Eds., IEEE Press, Piscataway, NJ.

3. Rechenberg, I. (1994), Evolution Strategy, in
Computational Intelligence: Imitating Life, J. M.
Zurada, R. J. Marks II, and C. Robinson, Eds., IEEE
Press, Piscataway, NJ.

4. Koza, J. R. (1992), Genetic Programming: On the
Programming of Computers by Means of Natural
Selection, MIT Press, Cambridge, MA.

5. Eberhart, R. C., Dobbins, R. W, and Simpson, P.
(1996), Computational Intelligence PC Tools, Boston:
Academic Press.

6. Eberhart, R. C., and Kennedy, J. (1995). A new
optimizer using particle swarm theory. Proc. Sixth
International Symposium on Micro Machine and
Human Science (Nagoya, Japan), IEEE Service Center,
Piscataway, NJ, 39-43.

7. Kennedy, J., and Eberhart, R. C. (1995). Particle swarm
optimization. Proc. IEEE International Conference on
Neural Networks (Perth, Australia), IEEE Service
Center, Piscataway, NJ, pp. IV: 1942-1948.

8. Kennedy, J. (1997), The particle swarm: social
adaptation of knowledge. Proc. IEEE International

10.

1.

12.

13.

14.

15.

16.

1948

Conference on Evolutionary Computation
(Indianapolis, Indiana), IEEE Service Center,
Piscataway, NJ, 303-308.

Eberhart, R. C., Shi, Y. H. (1998). Comparison
between genetic algorithms and particle swarm
optimization. 1998 Annual Conference on
Evolutionary Programming, San Diego.

Angeline, P. J. (1998), Using selection to improve
particle swarm optimization. IEEE International
Conference on Evolutionary Computation, Anchorage,
Alaska, May 4-9, 1998.

Fogel, D., Beyer H. A note on the empirical evaluation
of intermediate recombination. Evolutionary
Computation, vol. 3, no. 4.

Yao, X., Liu, Y. (1996). Fast evolutionary
programming. The Fifth Annual Conference on
Evolutionary Programming.

Shi, Y. H., Eberhart, R. C. (1998). Parameter selection
in particle swarm optimization. 1998 Annual
Conference on Evolutionary Programming, San Diego,
March 1998.

Shi, Y. H., Eberhart, R. C., (1998), A modified particle
swarm optimizer. IEEE International Conference on
Evolutionary Computation, Anchorage, Alaska, May 4-
9, 1998.

Angeline, P. J. (1998). Evolutionary optimization
versus particle swarm optimization: philosophy and
performance difference. 1998 Annual Conference on
Evolutionary Programming, San Diego.

Saravanan, N., Fogel, D. (1996). An empirical
comparison of methods for correlated mutations under
self-adaptation. The Fifth Annual Conference on
Evolutionary Programming.

fitness (log)

Fig. 1 Sphere function with popu. size=20

— d=10(log)
...... d=20(log)
d=30(log)

generation

fitness (log)

Fig. 2 Sphere function with popu size=40

[——¢=1a(log);
[_.._. d=20(log}|;

_ d=30(og) t
i

generation

Fig. 3 Sphere function with popu size=80

Fig. 4 Sphere function with popu size=160

1949

Do 10 ;
P ! [
I S
g = 0 [e .
" f.—d=20(cg)|| , & O fore d=20(l0g)
@ 1 H @
€ d=30(log) £ . d=30(log) |!
& L Ooal | g s |
| -10 | i
generation i generation i
il
Fig. 5 Rosenbrock function with popu size=20 ‘ Fig. 6 Rosenbrock function with popu size=40 i
| .
10 b 10 ‘
gs —_d=10(og)|| & g " 6=10(og)"-
] i =20(og)f | 2 e d=20(log) |}
§ 2 : d=30(log) | ! § 2 i 9=30(og)}
g = ! 0 s
! -~ UN D009 - . - o T T o o oy e v e v
B8FR:BREER i EEZRNEERIEEE
generation | 1 generation {
j L —!
Fig. 7 Rosenbrock function with popu size=80 | i Fig. 8 Rosenbrock function with popusize=160 _
| | '
g 1 ———d=10(loy)I 5 I
2 PR | g | —— d=T0(log)!
" = ~—
2 Goa)j | 5 —_d=20(og)":
2 d=30(log) | 8 i
& ’ ''g |1 d=30(og) |
b [= | S
LD = Gl T~ -~ . D~ 54 : ' - O N DO ON YD O -0
| EEERBBRIEEE o REEr3ERYERE
| generation | generation
i

Fig. 9 Rastrigrin function with popu size=20

|
i
!

!
i 800 !
I e !
I, 600 {——d"“‘w!i “ —_dm=10||
: § 400 ’.A.v.«..‘...dum=20y: | @ 400 onemmmmoin i b oo it | <o _dim=ZO!
. 1
| & 200 {5 dim=30f] | & dim=30
’ 0- ‘ ! m O <
- © = © © = © v © = © - N O © ~ - ©
C38E858888L8 \ RBEE88SEEEE :
genaration } generation t
| Fig. 11 Rastrigrin function with popu size=80 ‘ Fig. 12 Rastrigrin function with popu size=160 ‘
| | |
| 800 S— S .
; _._dim=10|l g 800 it il | —— diM=10]]
: !__.dim=20! [8 400 Liduis cmmmetriimmiciboimmiiimms il | dim=201"
dm=30{ | &€ 200 Pk : dim=30),
5 '} - e8SB8BE:3f: |
| é Teer®odIOR R ‘
| generation ! generation i
! [i
| Fig. 13 Griewank function with popu size=20 I Fig. 14 Griewank function with popu size=40 1
| | :
150 i
_Series1 @ 100 —— Series1 1
o Series2 2 - Series2
. Series3 g 80 Series3 ;
<] 0 |
W W N DWW MO N~ T - © 1 M O M~ v v~ © |
EENBBBITIES - ERLEE3 |
generation | generation .
— B R L I
R ——)
Fig. 15 Griewank function with popu size=80 : | Fig. 16 Griewank function with popu size=160 ‘
150 oy ‘ 1
" T 7 i \ .
! : S g —— Series1 @ —— Series1
| [NN) p— Series2 } 2 - Series2
£
: Series3| | & Series3||
: = n t
| N M O W o~ I~ -0 0N N DO MO~ - :
! 5888838 \ E88888858c3 |
cgFgerne ! e yxLene
. generation i generation i
H

1950

