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Abstract— Ant System is a general purpose algorithm in-
spired by the study of the behavior of Ant Colonies. It is
based on a cooperative search paradigm that is applicable
to the solution of combinatorial optimization problems. In
this paper we introduce MAXY-MIN Ant System, an im-
proved version of basic Ant System, and report our results
for its application to symmetric and asymmetric instances
of the well known Traveling Salesman Problem. We show
how MAX-MIN Ant System can be significantly improved
extending it with local search heuristics. Our results clearly
show that MAX-MTIN Ant System has the property of effec-
tively guiding the local search heuristics towards promising
regions of the search space by generating good initial tours.

I. INTRODUCTION

The Ant System algorithm, originally introduced in [3], [4],
is a new cooperative search algorithm inspired by the be-
havior of real ants. Ants are able to find good solutions to
shortest path problems between a food source and their
home colony. They communicate via pheromones (aro-
matic substances) that they use in variable quantities to
mark their trails. An ant’s tendency to choose a specific
path is positively correlated to the intensity of a found trail.
The pheromone trail evaporates over time, i.e, it looses in-
tensity if no more pheromone is laid down by other ants. If
many ants choose a certain path and lay down pheromones,
the intensity of the trails increases and thus this trail at-
tracts more and more ants.

The behavior of ant colonies is imitated to some extent
by Ant System by using simple agents, called ants, that
communicate via a mechanism inspired by the pheromone
trails. This search metaphor can be applied to the solu-
tion of combinatorial optimization problems [6]. We tested
our improved version of Ant System, MAX-MIN Ant
System (MMAS), using symmetric and asymmetric in-
stances of the Traveling Salesman Problem (TSP) taken
from TSPLIB [15).1

The rest of this paper is organized as follows: To make the
paper self-contained we first introduce the TSP and Ant
System (Section II). In Section III, we introduce our im-
proved version of Ant System, MMAS, and present some
computational results. After showing how MMAS can be
significantly improved by adding local search (Section IV)
we discuss the positive effect of cooperation among ants in
Section IV-C. Finally, in Section V we sum up our experi-
mental results and give an outlook on further work.
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II. ANT SYSTEM ForR TSPs

A TSP can be represented by a complete weighted directed
graph G = (V, A, d) where V = {1,2,...,n} is set of nodes
(cities), A = {(¢,7) | (¢,7) € V x V} the set of arcs, and
d: A— IN a weight function associating a positive inte-
ger weight d;; with every arc (¢,j).2 The aim is to find
a route of minimal length visiting every city exactly once.
For symmetric TSPs, the distances between nodes are in-
dependent of the direction, i.e. dij; = dj; for every pair of
nodes. In the more general asymmetric TSP (ATSP) at
least for one pair of nodes we have d;; # d;i;. The TSP is
a N'P-hard optimization problem which has many applica-
tions and is extensively studied in literature [12], [16]. It
also has become a standard testbed for algorithms that try
to find near optimal solutions to A“P-hard combinatorial
optimization problems. This is one more reason to apply
our extensions of Ant System to this problem class.

To solve TSPs, Ant System uses pheromone trails 7;; asso-
ciated with each arc (%, j). Initially, each ant is set on some
randomly selected city and begins constructing a valid tour
(i.e. a tour visiting every city exactly once) starting from
the initial city.® A tour is successively built by choosing
the next node probabilistically according to a probability
distribution proportional to:*

Pij ~ T -mP. if j not yet visited, else 0 (1)
where 7;; is a local heuristic function which in Ant Sys-
tem is defined as n; = 1/d;;. This value is high if the
distance between nodes i and j is small. The probability
distribution for the selection of the next city is biased by
the parameters a and 8 which determine the relative in-
fluence of the trail strength and the heuristic information.
To keep track of the cities already visited, every ant main-
tains a tabu list, in which its actual partial tour is stored.
After all ants have constructed a complete tour and have
calculated the corresponding tour length L, the trail is
updated. Every ant is allowed to lay down a total constant
quantity @ of pheromone. Thus, the trail intensities are
updated according to the formula

zd,',j can be interpreted as the distance between nodes : and j.

3For a more detailed description of the Ant System algorithm the
reader is referred to [6].

*To induce a probability distribution, we have to divide the numbers
by a common denominator. But this only complicates the formula
and distracts the attention from the essential part.
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where p is the persistence of the trail (thus, (1 — p) corre-
sponds to the evaporation) and m is the number of ants.
The amount A‘ri’;- is equal to Q/Ly if arc (i, J) is used by
ant k in its tour, otherwise zero. Thus, frequently used arcs
and arcs contained in short tours receive a high amount of
pheromone and therefore will be selected more often in fu-
ture cycles of the algorithm. This can be interpreted as a
learning of good arcs. Here good means that an arc partic-
ipates often in short tours. The two basic steps tour con-
struction according to (1) and trail update according to (2)
are then simply repeated for a given number of iterations
(cycles).®

The most important part of Ant System is the treatment
of the trail intensities. If some trail intensities are very
high, the ants are very likely to choose the next arc among
those with a very high trail intensity. In practice, the long
term effect of the trail intensities is to successively reduce
the size of the effective search space by concentrating the
search on a relatively small number of arcs. To character-
ize the amount of exploration Ant System performs, the
A-branching factor was introduced in [10]. For the value
of A = 0.05 we found out that if the if the mean 0.05-
branching factor is very close to 1, only very few (often
only one) arc exiting from a node have a very high selec-
tion probability and practically no new solutions are ex-
plored. In the following we will refer to such a situation as
stagnation of the search.

I11. MAX-MIN ANT SYSTEM

The performance of Ant System can be enhanced by allow-
ing only the best ant to update the trails in every cycle.
Yet a disadvantage of this strategy is the early stagnation
of the search that makes further tour improvements impos-
sible. When stagnation occurs, the trails on few arcs grow
so high that the ants will always construct the correspond-
ing tour again and again.

In MMAS we only allow the best ant to update the trails.
To alleviate the problems concerning early stagnation, we
introduced explicit maximum and minimum trail strengths
on the arcs, hence the name MAX-MTIN Ant System.
The maximum and minimum trail limits are chosen in
a problem-dependent way depending on the average arc
length (for details we refer to [17]). This way the influence
of the trail intensities is limited. As we use as a lower limit
Tmin, the probability that a specific arc is chosen may be-
come very small, but will be still greater than zero. The
trail imits alleviate the problem associated with the early
stagnation of search especially for long runs, thus leading
to a higher degree of exploration. The trail strengths in
MMAS are initialized to T,ax for all arcs. After each it-
eration the evaporation will reduce the trail strength by a
factor p. Only the trail on arcs participating in the best

5We refer to the complete cycle of tour constructionand trail update
as omne iteration, similar to generation in genetic algorithms.

TABLE I
Results on problems of the First International Contest on
Evolutionary Computation, 25 runs for each problem. 20.000
iterations for ATSPs, 10000 for symmetric TSPs. qualityis the
percentage deviation form the known optimal solution. best the

best result obtained and avg.best the average tour length over 25

rans.

Problem best (quality) | avg.best] o

eil51.tsp 426 (0.0%) 427.2 1.13
kroA100.tsp 21282 (0.0%) | 21352.05| 50.30
di93.tsp 15960 (1.14%) | 16065.95| 73.82
ry48p.atsp 14422 (0.0‘@% 14461.64] 39.27
ft70.atsp 38690 (0.04%) | 38903.44] 149.85
krol24.atsp 36416 (0.50%) | 36594.36] 156.03
ftvi70.atsp 2826 (1.74%) | 2836.40 | 14.91

tours are allowed to increase their intensities or maintain
them at a high level. Thus, the trail strength on bad arcs
decreases slowly and only good arcs can maintain a high
level of trail strength and will therefore be selected more
often by the ants.

The performance of MAMAS improves considerably over
Ant System. Despite of using maximum and minimum trail
limits, long runs of the MMAS still can show stagnation
behavior. If the mean 0.05-branching factor approaches
very low values only few new tours are built, leading to
very limited exploration of possibly better tours. To avoid
this, we added the trail-smoothing mechanism: In case of
stagnation of the search as indicated by the mean branch-
ing factor, we adjust the trail intensities according to a
proportional update: The trail intensity is increased pro-
portionally to the difference between 7., and the current
trail intensity 7;;(t) on the arc (¢, j), Le.

increase ~ Tpax — Tij(t)

As an advantage of the proportional update, we do not
completely forget the trails learned so far. Its overall effect
is that by increasing the trail intensities, the probability
distribution for the selection of the next node is influenced
in such a way that the exploration of new tours is higher.
We call this approach smoothing of the trails as the dif-
ferences between high and low trail intensities become less
pronounced, i.e. smoother. With this approach the solution
quality for longer runs increased significantly.

To give an indication of the performance with respect to so-
lution quality of MAMAS, we present the results of MMAS
for some TSP in Table I. The TSPs were taken from the
First International Contest on Evolutionary Optimization
[1]. For an easier comparison to other existing improved
variants of Ant System we also give the results obtained
with Ant Colony System (ACS, on of the best existing ex-
tension of Ant System [9]), for these problems, see Table II.
Problems with extension atsp are asymmetric TSP, prob-
lems with extension tsp are symmetric TSP. The number
associated with each instance is the number of cities, except
of problem kro124.atsp that comprises 100 cities. The pa-
rameter settings are p = 0.99, a, 7 = 1.0, and m = n except
for £tv170.atsp, where we chose m = n/2. In all tables
we detail the best result obtained for the runs, the aver-
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TABLE II
Solution quality for Ant Colony System (ACS) based on 15

independent runs. Table is reproduced from [9].

Problem best avg.best | o
eil51.tsp 426 428.06 2.48
kroA100.tsp 21282 21420 141.72
d198.tsp 15888 16054 71.15
ry48p.atsp 14422 14565.45 115,23
ft70.atsp 38781 39099.05 170,32
krol24p.atsp 36241 36857.00 521,19
ftv170.atsp 2774 2826.47 33,84
TABLE III

Performance of MMAS with additional candidate sets. 20.000
iterations for ATSPs, 10000 for symmetric TSPs. Averages over 25

independent runs.

Problem best (quality) | avg.best o
eil51.tsp 426 (0.0%) 426.7 (0.16%) 0.73
kroA100.tsp | 21282 (0.0%) | 21302.80 (0.01%) | 16.39
d198.tsp 15963 (1.14%) | 16048.60 (1.70%) | 79.72
att532.tsp 28000 (1.13%) | 28194.80 (1.83%) | 144.11
ry48p.atsp 14422 (0.0% 14465.30 (0.30%) | 39.27
ft70.atsp 38690 (0.04%) | 38913.50 (0.52%) | 206.33
kroi24.atsp | 36416 (0.50%) | 36572.85 (0.97%) | 137.67
ftvi70.atsp 2787 (1.16%) | 2807.75 (1.91%) | 12.67

age solution and its standard deviation o. The percentages
are the deviation form the known optimal solution. Except
for the problems ftv170.atsp and d198.tsp the average
performance of the MMAS achieved over 25 independent
runs is better and the standard deviation of the solution
quality is generally smaller than the corresponding results
for ACS.

One disadvantage of all the above algorithms is the high
run time. Basically the algorithm constructs m tours in
each iteration and the construction of each tour itself has
complexity O(n?), leading to a total complexity of O(m-n?)
for each iteration of MAMAS. As we usually choose m equal
to the number of nodes this results in an overall complexity
of O(n®). Therefore, the run time grows rather fast with
increasing problem size.

To lower the run time for MMAS, we considered the possi-
bility of adding candidate sets [16], [5]. Besides of reducing
computation times by far this modification also has a pos-
itive influence on the performance of MAMAS. To some
extent this can be observed for the larger problems (Ta-
ble II1).% The effect of adding candidate sets is still more
notable if less iterations are allowed and when time limits
are given for the run time of MMAS, see Section IV-B.
One should remind, that for many problems the optimal
tour can be found within a surprisingly low number of near-
est neighbors. So for the problem instance pcb442.tsp
with 442 cities an optimal solution can be found within
a subgraph of the 6 and for pr2392.tsp with 2392 cities
within a subgraph of the 8 nearest neighbors [16]. Thus,
it is plausible, that the addition of candidate sets has a
positive influence on the performance of MAMAS.

8Note, that the average results for MMAS in Table III are all
better than the ones obtained for ACS, see Table II. Yet for ACS the
best solutions are most often better than for MAMAS.

IV. A LOCAL SEARCH MMAS

MAX-MIN Ant System can be interpreted as a random-
ized restart procedures that iteratively tries to construct
good solution to combinatorial optimization problems. The
difference to simple restart algorithms is that several solu-
tions are constructed in parallel and that trail intensities
are used as a communication mechanism between the iter-
ations of the restart mechanism biasing the following iter-
ations towards promising regions of the search space. An
often used extension to such a kind of algorithm algorithm
is the addition of a local search phase to improve the con-
structed solutions [7]. Local search is also often used to
improve the performance of Genetic Algorithms [18], [8]
and also has been used in one application for Ant Sys-
tem [13]. The reason for adding local search algorithms to
MMAS is twofold: On the one hand, we want to enhance
the performance by adding local search, yielding an earlier
detection of high quality solutions and to guide the learn-
ing mechanism mroe directly. On the other hand, we hope
that MMAS is able to construct good initial tours for the
following local search phase, such that near optimal tours
can be found.

We apply local search to MMAS after every iteration. In
this section we especially investigate the issue of how local
search should be added to MMAS, especially which ants
should be allowed to perform local search. Here we consider
basically two possibilities. One in which all ants are allowed
to perform local search after each iteration. The other
possibility is to allow only the iteration-best ant to improve
its current tour by a local search. Additionally one also
has to choose the number of ants in MAMAS when adding
local search. In the experimental investigation we use one
version with a constant number of 10 ants and one in which
the number of ants is increased proportionally to problem
size.” When we allow all ants to perform local search, we
only use a constant number of 10 ants as for larger problem
instances the number of local searches would become too
high. We will refer to the different versions as follows: 10
+ all-1s is the version in which 10 ants are used and all
ants are allowed to perform a local search, 10 + best-1sis
the version with a constant number of 10 ants and only the
best is allowed to perform local search, and MMAS + 1s
is the version in which the number of ants is proportional
to problem size and the best ant performs local search.

For symmetric TSPs we implemented the so called 2-opt
heuristic which involves the exchange of two edges. For
ATSPs, 2-opt is not directly applicable since the direction
in which the arcs are traversed has to be considered.® Thus,
for ATSPs we used one specific 3-opt move that allows the
insertion of arcs without reversing the direction of any par-
tial tour. We will refer to this form of 3-opt for ATSP as
reduced 3-opt. The local search may be implemented using

"Note, that in MMAS without local search the number of ants
has to be increased proportionally to problem size to yield reasonable
performance.

8In a 2-opt move one partial tour has to be traversed in the opposite
direction. Hence, for ATSPs the length of a partial tours has to be
calculated again, leading to high run times.
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TABLE IV
MMAS with additional 2-opt for symmetric TSP, with reduced
3-opt for ATSP. Three different versions of MAMAS and local search
are considered. The runs were stopped after k- n - 100 steps of
O(n?). The average solution quality is calculated over 10 runs. The

best version for a specific problem instance is indicated by bold face

numbers.

[Problem | 10 + all-1s | 10 + best-1ls | MM4S + 1s |
kroA100.tsp | 21502 (1.03%) | 21427 (0.68%) | 21481 (0.94%)
d198.tsp 16197 (2.64%) | 15856 (0.48%) | 16056 (1.75%)
lin318.tsp | 43677 (3.92%) | 42426 (0.94%) | 42934 (2.15%)
pcbdd2.tsp | 53993 (6.33%) | 51794 (2.00%) | 52357 (3.11%)
att532.tsp 29235 (5.59%). | 28233 (1.98%) | 28571 (3.20%)
rat783.tsp | 9576 (8.74%) 9142 (3.81%) | 9171 (4.1a%)
pd3.atsp 5626 (0.11%) 5626 (0.11%) 5625 (0.10%)
Ty48p.atsp | 16318 (13.1%) | 14970 (3.80%) | 16308 (13.1%)
ft70.atsp 40278 (4.15%) | 39193 (1.34%) | 40127 (3.76;)}
kro124p.atsp| 44167 (21.9%) | 39201 (8.20%) | 43232 (10.3%
Ttvi70.atsp | 3909 (41.9%) | 2923 (6.10%) | 2939 (6.68%)

different pivoting rules. In a best-improvement heuristic
the best possible neighborhood move is selected. As espe-
cially for larger problems this involves very high computa-
tion times, we considered also a first-improvement pivot-
ing rule, in which the first improving move is performed.
The results presented for ATSPs are based on the first-
improvement version, for symmetric TSPs on the best-
improvement version. For symmetric TSPs we additionally
restricted the set of possible 2-opt moves to a 35 nearest
neighbor subgraph [16].

A. Ezperimental results

In this section we aim to assess the relative value of the dif-
ferent ways in which local search may be added to MAMAS.
The results are obtained after a fixed number of steps of
complexity O{(n?) as proposed for the Second International
Contest on Evolutionary Optimization. The number of
steps is imited by k- n - const, where k& = 1 for symmetric
TSP and k& = 2 for ATSPs, n is the number of cities of
the TSP instance and const € {1, 50, 100, 500, 1000, 2500}.
We report on our results obtained for some values of const,
see Table IV to VI. The reason for stopping the runs after
several values of const is that according to the limit on the
number of steps the relative order of the variants accord-
ing to their performance may change.® To investigate the
performance of the different versions of MAMAS with local
search, we used the problem instances of Section III and
additionally also some larger instances of symmetric TSPs.
The parameter settings were determined in preliminary
runs of the different kinds of algorithm and are chosen con-
sidering performance on longer runs of the algorithms. If
before the run of an algorithm it is known that the allowed
number of steps is rather low, other parameter settings
might be better as the ones used here.

For a rather small number of steps allowed, see Table IV,
except for problem p43.atsp, the version 10 + best-1s
performs best on all problems.!® If we allow for more

9See also Section IV-B when CPU-time limits are given.
0 Compared to version MMAS + 1s the rather large differences
are also due to the different values for p that are best for the two

TABLE V

MMAS with additional 2-opt for symmetric TSP, with reduced’

3-opt for ATSP. The runs were stopped after k- n - 500 steps of
O(n?). We give the average solution quality for the different

versions of MMAS with local search.

{ Problem [ 10 + all-1s [ 10 + best-1s | MMAS + 1s |
kroA100.tsp | 21282 {0.0%) | 21282 (0.0%) | 21282 (0.0%) |
d198.tsp 15851 (0.45%) | 15829 (0.31%) | 15817 (0.23@:
1lin318.tsp 42159 (0.31%) | 42239 (0.50%) | 42376 (0.83%) |
pcb442.tsp | 51274 (0.98%) | 51553 (1.53%) | 51265 (0.96?;)_
att532.tsp | 28027 (1.23%) | 28103 (1.51%) | 27973 (1.04%)
rat783.tsp | 9082 (3.13%) | 9096 (3.29%) 9056 (2.84%) |
p43.atsp 5622.0 (0.04%)] 5625.4(0.10%) | 5625.4 (0.10%)
ry48p.atsp | 14983 (3.89%) | 14694 (1.89%) | 14780 (2.48%
ft70.atsp 39229 (1.44%) | 38919 (0.64%) | 38775 (0.26%
kro124p.atsp| 39881 (10.1%) | 37452 (3.37%) | 37391 (3.20%)
ftvi70.atsp | 2969 (7.77%) | 2828 (2.65%) | 2862 (3.88%)

TABLE VI
MMAS with additional 2-opt for symmetric TSP, with reduced
3-opt for ATSP. The runs were stopped after k « n - 2500 steps of

O(n?) for all ATSPs and the smaller symmetric TSPs. For problem

instances pcb442, att532, and rat783 the runs were stopped after

n - 1000 steps. We give the average solution quality for the different
versions of MMAS with local search over 10 independent runs.

[ Problem [ 10 + all-1s [ 10 + best-1s | MMAS + 1s |
kroA100.tsp | 21282 (0.0%) | 21282 (0.0%) | 21282 (0.0%) |
d198.tsp 15821 (0.26%) | 15816 (0.28%) | 15786 (0.04%)
in318.tsp__ | 42070 (0.09%) | 42135 (0.25%) | 42195 (0.39%) |
pcb442.tsp | 51131 (0.69%) | 51505 (1.43%) | 51212 (0.85%%:
att532.tsp | 27871 (0.67%) | 28063 (1.36%) | 27911 (0.81%)
rat783.tsp | 9047 (2.74%) | 9085 (3.17%) | 8976 (1.93%) |
pa3.atsp 5620.8 (0.01%)] 5623.1(0.06%) | 5623.8 (0.07%) |
ry48p.atsp | 14566 (1.00%) | 14559 (0.95%) | 14494 (0.50;22_
ft70.atsp 38855 (0.47%) | 38830 (0.41%) | 38707 (0.09%) |
krol24p.atsp| 37415 (3.27%) | 36901 (1.85%) | 36655 (1.17%)
ftvi70.atsp | 2812 (2.07%) | 2790 (1.27%) | 2807 (1.89%)

steps, see Table V and Table VI, this changes. In case
of ATSPs in 3 out of 5 problem instances the version
MMAS + 1s gives the best average solution quality, see
TableVI. For the smallest problem p43.atsp the ver-
sion all + 1s and for the largest instance ftvi70.tsp
the version 10 + 1s is best. The results for symmetric
TSPs are slightly different. Except for the very easy to
solve problem instance kroA100.tsp the version 10 + 1s
1s never best. Interestingly the version all + 1s performs
best for three problem instances, instances 1in318.tsp,
pcb442.tsp and att532.tsp. Yet for the largest instances
again MAMAS + 1s is best.

It is interesting to have a closer look at possible reasons
for the behavior of the algorithms. In case of 10 + all-1s
one specific problem seems to be that many local searches
are performed without having any effect on the trails, as
only the best local minimum is used to update the trails.
In general better initial tours also lead to better local min-
ima. Thus, it seems reasonable to restrict the application
of local search to the best initial tours as done for exam-
ple in version 10 + best-1s. For short runs of the algo-

versions for longer runs. For MMAS + 1s the values for p are higher
than for 10 + best-1s, thus learning is slower. We verified that for
MMAS + 1s with smaller values for p still performance would be
slightly worse.
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TABLE VII.
Greedy random tour construction with subsequent local search.
Results obtained with & - n - 2500 steps of O(n?) except for pcb442,
at$532 with n - 1000 steps. quality refers to the percentage

deviation of average solution quality from the known optimal

TABLE VIII
Results for some TSP under time constraints. time gives the
CPU-time allowed. Here average solution quality is given of 10
independent runs. Allowed CPU times are 30 sec. for eil51.tsp,
100 sec. for kro4100.tsp, 200 sec. for d198.tsp and 500 sec. for

solution over 10 runs. Above for symmetric TSPs, below for ATSPs. 1in318.tsp.
kroA100| d198 1in318 pcb442 att532 Variant . eil51 kroA100 | 4198 1in318
quality | 0.0% 1.0% 2.3% 3.5% 3.5% MAM3ES 502 63070 67910 3141832
= a8 [0 Trolzdp | RvI70 MMis + ¢ | 446 26127 | 24703 | 55170
quality | 0.01% 5.1, 3.8% 10.9% 15.1% 10 - all+ls 426.2 21284 16225 44670
10 - 427.3 21283 15992 42994
best+ls
rithm actually the version 10 + best-1s is the best pos- | MMiS+ 427.5 21290 15945 43158
sible choice. Yet if longer runs are allowed, this version L15

again in most cases is outperformed by MMAS + 1s and
again 10 + all-ls. The reason for this might be twofold.
In case of MMAS + 1s it is simply better to choose the
best initial tour among a higher number of possible ini-
tial tours.!! In case of 10 + all-1s for symmetric TSPs
it seems that a run needs enough time so that most of the
initial tours are rather good initial tours for the subsequent
local search. If this is the case, it seems sensible to allow
more ants to perform local search. Thus, one idea to im-
prove on the versions proposed here might be to start with
few ants and to allow only the iteration-best ant to improve
its tour. As high quality solutions are found, one could in-
crease the number of ants and allow more ants to perform
local search.

In Table VII we indicate the results obtained with a greedy
tour construction heuristic. A greedy tour construction
heuristic can be obtained in a straight forward way by set-
ting in Equation 1 o = 0 and n > 0. Note that for n = 0.0
we obtain a heuristic that constructs random initial tours.
We found that a value of n = 5 produced the best re-
sults, by far better then random tour construction or near-
est neighbor initial tours. Note that it can be proved that
for 7 — oo the nearest neighbor tour construction heuris-
tic is obtained. When comparing Table VI to Table VII
one can observe that by using variants of MMAS clearly
much better results are obtained with the improvement for
ATSPs being relatively higher than for symmetric TSPs.
Note, that the results presented in Table VII are by far
better than the usually used method of comparing one’s al-
gorithm to random tour construction with subsequent local
search.

B. Performance under time constraints

To give an indication of run times for the algorithm and to
further assess the relative value of the different strategies
to improve the MMAS, we performed some additional ex-
periments under time constraints, see Table VIIL1Z We
compared the solution quality of MAMAS without candi-
date sets (MMAS), MMAS with candidate sets (MMAS
+ C), and the versions proposed for local search.

As we have seen, MAAS can obtain high quality solutions
if enough time is given. For the severe time constraints

1110 tours are possible for 10 + best-1s, n/3 for MAMAS + 1s.

12The experiments were performed on Sparc20 Workstations
$520/50.

given here, it has no time to perform enough iterations to
learn the trails. This problem is alleviated to some extent
by the use of candidate sets as the tours can be constructed
faster and more iterations can be made and the candidate
sets may be interpreted as a learning aid for MMAS by
choosing possibly good arcs. A faster detection of good
tours for MMAS would be also possible by lower values
for p ot by using higher values for 3 during the start of the
algorithm. Additional local search improved the solution
quality for restricted time by far. Yet, as before among the
strategies on how to add local search to the MAMAS there
is no clear winner.

C. Cooperation improves local search

Cooperation among the ants helps the basic Ant System
and its variations to significantly improve the performance
[6], [17]. Now we will show that this is still true if we
add a local search phase to improve the solution of the
ants. We consider only the case in which all ants perform
local search and a fixed number of 10,000 tour construc-
tions and local searches is allowed. We choose the number
of ants m and the number of iterations iterat such that
iterat x m = 10,000, i.e. we vary the number of ants.
Thus, if only one ant is used, it performs local search and
updates the trails. If more ants are used, only the ant with
the best local minimum is allowed to update the trails. The
results in Table IV-C for problem ry48p.atspindicate that
also when using local search the cooperation among ants
remains helpful. Around 5 ants were already emough to
provide very good performance, giving considerably better
performance than using only one or two ants. It is inter-
esting to note that the solution quality decreases again if
too many ants are used. The reason is that not enough
iterations are performed to learn the trails.

If we compare the performance of MAMAS with local search
to greedy tour construction with a local search phase like
in Section IV-A, MMAS with local search performs signif-
icantly better. For 10,000 applications of local search we
obtained for 10 runs an average tour length of 14870.60,
with the best local minimum being 14782. Interestingly,
if only one ant is used better results are obtained, see Ta-
ble IV-C.

313



TABLE IX
Parameter Settings for the Ant System on ry48p.atsp, Averages
over 10 tries, p = 0.9, n = 1.0, a = 1.0, MMAS with additional
3-opt, 10000 local minima

m Tterations best avg.best o

1 10000 | 14603 | 14718 (2.06%) | 89.52
2 5000 14541 14625 (1.41% 63.49
5 2000 14422 | 14514 (0.64%) | 55.92
10 1000 14422 | 14500 (0.54%) | 73.88
20 500 14422 14508 (0.60% 58.41
30 333 14422 | 14509 (0.60%) | 60.24
40 250 14451 14508 (0.60%) | 46.60
80 125 14422 | 14511 (0.62%) | 62.57
160 62 14621 14743£2.23%) 117.48

V. CONCLUSION AND FURTHER RESEARCH

In this paper we presented MAX-MIAN Ant System, an
extension of Ant System introduced in [3], [4]. MAX-
MIN Ant System yields significant improvements in per-
formance over Ant System and performs at least at the
same level of performance as ACS, in most cases giving a
better average performance. A feature shared by MAMAS,
and ACS is the strategy that only the best ant updates the
trails in each iteration of the algorithm. The differences
between MMAS and ACS are mainly in the way how a
premature stagnation of the search is prevented. MMAS
uses bounds on the allowed values for the trail intensities
and provides an additional mechanism, smoothing of the
trails, to prevent early stagnation. Furthermore, we ex-
tended MMAS by adding a local search phase and demon-
strated that thereby the solution quality of MAAS can be
significantly improved. The combined system outperforms
local search with restart by far, which shows that MMAS
is very effective in guiding the local search heuristic. Addi-
tionally we investigated several possibilities of how to add
local search to MAMAS. We are only aware of one other
work [13], in which Ant System was combined with a lo-
cal search phase. In other experiments, not reported here,
we also could show that MMAS with local search outper-
forms Ant System with additional local search [17].

Apart from Ant System, many different heuristics have
been applied to the TSP. We do not claim that our ap-
proach can yet compete with specialized TSP-algorithms
like iterated Lin-Kernighan (see [11], [14]). Nevertheless,
our results clearly indicate that by using a general purpose
heuristic approach like MAAS high quality solutions for
the TSP can be obtained. Furthermore AMAMAS proved
to be very useful in guiding the local search algorithms.
Still there is a large potential to improve the performance
of MMAS plus local search by using more sophisticated
local search heuristics for TSP like Lin-Kernighan, see [18],
[11], [8], or exploiting more directly specific problem char-
acteristics of Euclidean TSPs (2], [8].

Another interesting issue is the development and study of
techniques for automatic adjustment of the most impor-
tant parameters of MAMAS. In this context, evolutionary
approaches might be a promising approach. The appli-
cation of the Ant System is not limited to TSPs (as can
be seen e.g. in [6]); therefore we also plan to investigate
whether our encouraging results for MAMAS on TSP carry

over to other problem classes.

All in all, MAX-MIN Ant System— especially when
combined with local search heuristics — seems to be a
very promising tool providing an adaptive framework for
the solution of hard combinatorial optimization problems.
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