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understanding of the foraging behaviors of ants [1] has led
Abstract to novel, distributed control and management in

This paper describes how multiple interacting swarms of communications Networks.

scepive moble agent can be use 10 save proiems i T1® P20 ST of s sbseuen seore 1 1
networks. The paper introduces a new architectural ' 9

description for an agent that is chemically inspired and ,:nt iﬂgg{azgircgfIsozrresrizﬁingfnpzegrzitcgcrlﬂrr‘gesTvr:gh
proposes chemical interaction as the principal P '

; ; L following section describes a scenario drawn from the
mechanism for inter-swarm communication. Agents commugications domain where a multi-swarm architecture
within a given swarm have behavior that is inspired by

the foraging activities of ants, with each agent capable ofEgﬁ]bzerrl]gzﬁg';meprf;gi?;ﬁ“g?e'stﬁgﬁsbrti);tlh z';nslélﬁggg aAnd
simple actions and knowledge of a global goal is not 9 9 ' y :

assumed. The creation of chemical trails is proposed asoummary of our findings is then provided and the paper

the primary mechanism used in distributed problem ends with conclusions and future work.

solving arising from self-organization of swarms of .

agents. The paper proposes that swarm chemistries ca- Swarm Intelligence

be engineered in order to apply the principal ideas of the

Subsumption Architecture in the domain of mobile agents. Swarm Intelligence [2] is a property of systems of
The paper presents applications of the new architectureunintelligent agents of limited individual capabilities
in the domain of communications networks and describesexhibiting collectively intelligent behavior. An agent in
the essential elements of a mobile agent framework that ishis definition represents an entity capable of sensing its

being considered for its implementation. environment and undertaking simple processing of
environmental observations in order to perform an action
1. Introduction chosen from those available to it. These actions include

modification of the environment in which the agent
operates. Intelligent behavior frequently arises through
indirect communication between the agents, this being the
principle of stigmergy [12]. It should be stressed,
however, that the individual agents have no explicit
problem solving knowledge and intelligent behavior arises
(or emerges) because of the actions of societies of such
agents.

Individual ants are behaviorally simple insects with
limited memory and exhibiting activity that has a
stochastic component. However, collectively ants manage
to perform several complicated tasks consistently well.

In the ant problem solving behavior documented; e.g.
4], two forms of stigmergy can be inferred.

Sematectonistigmergy involves a change in the physical
characteristics of the environment. Ant nest building is an
example of this form of communication in that an ant

The notion of complex collective behavior emerging
from the behavior of many simple agents and their
interactions is central to the ideas of Artificial Life [15].
Nature provides us with several examples of social
systems comprising individuals exhibiting simple
behaviors while the society exhibits complex problem
solving capabilities.

Naturally occurring social systems provide considerable
inspiration for artificial systems that display emergent
behavior. Such systems promise to provide guiding
principles for, and engineering solutions to, distributed
systems management problems found, for example, in[1
communications networks.

In this paper, we describe the essential principles of
Swarm Intelligence (SI) and, in particular, how an



observes a structure developing and adds to it. The secondgents communicate locally, when co-resident on a node
form of stigmergy issign-based Here, something is and only through their local chemical environment.
deposited in the environment that makes no direct Agents in our system can be described by the tuple,
contribution to the task being undertaken but influences#=(€ 2 ¢.707.«). They have a uniform architecture
subsequent task related behavior. consisting of five components:

Sign-based stigmergy is very well developed in ants. « emitters £),
Ants foraging for food lay down quantities of pheromone . receptors ),
(a highly volatile hormone) marking the path that it

. . ; chemistry £),
follows with a trail of the substance. An isolated ant Lo L .
. : e a migration decision functior4D7),
moves essentially at random but an ant encountering a
previously laid trail will detect it and decide to follow it memory &)

with a high probability and thereby reinforce it with a _
further quantity of pheromone. The collective behavior 3.1. Emitters
which emerges is a form of autocatalytic behavior where
the more the ants follow the trail the more likely they are The emitters associated with an agent are used to
to do so. generate chemicals that are deposited where the agent is
The use of ant foraging behavior as a metaphor for acurrently located. Using ants and their foraging behavior
problem-solving technique is generally attributed to as an example, pheromones are laid down as the ant
Dorigo [9]. It is considered central to our work. However, returns from searching for a source of food. Emitters have
since Dorigo's early work on the Travelling Salesman an associated Emitter Decision Function (EDF) which is
Problem (TSP) and Asymmetric TSP, the technique hasused to decide the rate of production of an emitted
been applied to several other classes of problem. Thesehemical. The emitted chemical is digitally encoded,
include the Quadratic Assignment Problem (QAP) [16, having an associated pattern that uses the alphabet {1, 0,
22], graph coloring [7], vehicle routing [6] and, as we #}. This encoding has been inspired by those used in
shall see in the later sections, communications networkGenetic Algorithms [11] and Classifier Systems [13]. The

routing. hash symbol in the alphabet allows for matching of both
one and zero and is, therefore, the "don't care" symbol. A
3. Agent System Architecture chemical encoding including one or more "don't care”

symbols can be thought of as a generalized chemical or an

In our system, antlike agents solve problems by instance of several classes of chemical.
moving over the nodes and links in a network and 1he function of an emitter is to alter the local
interacting with chemical messages deposited in thatnVironment inhabited by the agent. Using the above
network. Chemical messages have two attributes, a labeflPhabet it is possible, for example, for an agent to
and a concentration. These messages are the only mediufEnerate a digital chemical with the encoding 1#01 which
of communication used both between swarms andwnl be sensed by an agent with a 1101 receptor and by an

individual swarm agents. Data and chemicals are29€ntwith a 1001 receptor. _ _
considered synonymous in our system. An emitter can be either on or off depending upon its

Agents in our multi-swarm system are of limited internal state; i.e. the concentrations of chemicals stored

intelligence; i.e. they belong to the ‘lightweight category Within agent memory.

of agents, and are capable of only simple behaviors. Such

agents are reactive in nature and have the ability to sensg-2. Receptors

and modify their environment locally. Our agents stand in

stark contrast to agents supporting the Belief-Desire- The receptors associated with an agent are used to sense

Intention (BDI) model [19]. However, we freely chemicals that are present in the agent's local environment

acknowledge the desirable nature of hybrid reactive-and chemical changes that occur in it. Using, once again,

reflective architectures such as the Touring Machineants and their foraging behavior as an example,

architecture [10] and, in fact, our lightweight agents pheromones are sensed by the ant as it searches for a

interact with stationary agents on platforms used for source of food. Receptors have an associated Receptor

management and planning in our networks. Having theDecision Function (RDF) that is used to determine the

capability for mobility, ant-like agents are potentially able sensitivity to the chemical in question and it is possible to

to modify local environments on network elements (or associate actions with a receptor. The sensed chemical is

components) in the entire network that they inhabit. digitally encoded, once again having an associated pattern
that uses the alphabet {1, 0, #}. It is possible, therefore, to



engineer wide spectrum sensors that detect many

chemicals. For example, a receptor engineered to sens

the encoding 10## will be able to detect the chemicals z

having the 1000, 1001, 1010 or 1011 encoding. Generally Xp ﬁY
a receptor having n positions in the encoding with the

hash symbol will be able to detect¢hemicals. Like an
emitter, a receptor can be either on or off depending upor
its internal state.

‘Connection Monitoring AgentA ‘Connection Monitoring Agent $

Monitoring agents A and B lay down increasing quantities of pheromone
with decreasing quality of service on a given link. Diagnostic agent
33 Chemistry Ziz:zz;t&creasmg levels and initiates diagnostic activity when threshold

. . . . Figure 1: Type 3 Reaction Example
The chemistry associated with an agent is the set o g yp P

chemical reactions that can occur within the agent. Wh'leresult, they lay down quantities of X and Y that indicate

the reaction set is limited to, at most, two reactants Orpy jncreasing level of dissatisfaction with the quality of

products, larger reactions can be synthesized by buildinge connection. A diagnostic agent encoding a type three
chains of these five types of reaction. There are five typeS.ooction has one or more receptors that allow for the

of reaction that can occur within an agent. These aréjetection of X and Y, allowing for the generation of Z.
shown below. The fourth reaction type represents a catalytic reaction

X -'nothing where one chemical is converted to anotherily in the
X+Y Y presence of a mediating chemical, the catalyst. This type
X+Y o Z of reaction can be thought of, in computational terms, as
X+Y & X+7 providing a conditional construct where, only if we have a

X +Y L W+Z certain confidence in a given state can we perform a
' . - . specific transformation of one chemical to another. The
The first reaction can be thought of as evaporation of &itth reaction type is the most general in that the two

chemlcal.. An example of such a reactlon.would be thereactants are converted to two products that are distinct
evaporation of pheromone from an ant trail. The secondfrom the reactants. Depending on whether a given

ty.th 31‘ reaction ;.S’ th(tehcatalzltllc ttJre:kdown 01; a them'ﬁal'chemical is part of one swarm layer or the swarm layer
Wi representing the catalyst. An example of SUCh a4y it the five types of chemical reaction can be

reaction might be a parasitic interaction between tWO_considered as providing both inhibitory and excitatory
types of agent such as could be observed when one ant

trving 1o th ther off th  wh tina Stimuli to the upper swarm layer. For example, Figure 1
rying to throw another off the scent wheén Competing 1or .5, e viewed as providing an excitatory stimulus to the
finding a path to a given food source. Another example

L o L 'fault detection swarm layer considered being above the
this time from the telecommunications domain, is the

. . ) .~ connection-monitoring layer within our multi-swarm
scenario where an agent representing higher priority - pitacture.
traffic reduces the concentrations of '°V.Ver priority t_raffic' All of the reactions use digitally encoded chemicals, i.e.
pheromones (that are used to mark a given route) in orde!rleI chemicals use the {1, 0, #} alphabet. Hence, reactions
to have the lower priority traffic find an alternate route. * ' '
The third reaction type represents the fusion of two of the form below are supported
chemicals and it is this type of reaction that we envisage 011+1#0 ~ 140 .
being used to communicate information from one layer of The above reactlo_n, an example of a type two re_actlon,
a multi-swarm hierarchy to another. This type of reaction allows fpr the catalytic breakdown of the 011 Che'_”?'ca! to
provides a mechanism which multi-swarm systems coulg@cceur via two catalysts_, namely 11(.) or 1(.30' Ur_1|f|cat|on_
use to implement Subsumption Architectures [4, 5]. This oceurs between chemicals on a bit-by-bit _ba5|s "’E,nd ',S
is shown diagrammatically in Figure 1. Figure 1 shows Camfd through fro"? reactants to p_roducts, .e. the "don't
two connection monitoring agents that have quality of &€ symbol in a given position within two reactants or
service monitoring for a specific connection as their b_etween reactants _and products can b_e either 1 or 0 in a
primary responsibility. They detect decreasing quality of single regc_tl_o_n. Us_lng the above reaction as an example,
service for a shared network resource on, say, a link. As a{our possibilities exist. These are shown on the next page.

! Note that the concentrations of the two chemicals have been assumed
to be one in this example.



011+110- 110 3.4. Memory

011+100- 100
011+110 - 100 hThe_ Temo(jrthssociated V\_/ith ahn agenr: IZtc_wes tr|1|e
0114100 . 110 chemicals and their concentrations that are held internally

The first two reactions are implied, with the "don't care" to the agent. It is the holder of the state of the agent,

symbol being unified to 1 and 0 respectively. However Symbolic information can also be stored in memory,
y 9 . Spectively. ' however, the agent alone may use this type of information.
the latter two reactions are not implied, as in both

reactions the "don't care" symbol in the second ositionThese types of agent cannot communicate such
. y P information to the environment. Only chemicals for which
has to unify to both 1 and 0.

. : .__emitters or receptors are not provided are stored within
All of the reaction types have an associated reaction P P

rate, i.e. a measure that determines the speed with Whicﬁgent memory.
the reaction can occur. Reaction rates are temperatur
dependent, with the dependence characterized b
Arrhenius' equation. Temperature and energy are
considered to be essentially the same in our system. The Migration Decision Function (MDF) is a function
Consequently, a unique chemical encoding that can bedr rule set thatis used to determine where an agent should
generated by chemical reactions (as any other) has beewsit next. The MDF typically uses chemical and link cost
chosen to represent temperature_ By using the Saménformation in order to determine the next hOp in its
representation for energy and chemicals, endothermic andourney through the network or may simply follow a hard-
exothermic reactions can be used to cool and heat th€oded route through the network. This latter migration
system respectively. Endothermic  reactions are Strategy is often referred to as an itinerary in the mobile
characterized by a decrease in temperature and, as suc@gent literature. Alternatively, when migrating, the agent
reaction types 2, 3, 4 and 5 can represent this type ofmay use the default migration node available to it.

reaction. This is shown in the example reactions below,

where T is meant to represent the energy consumed by thd.6. Agent Operation

reaction, i.e. it appears on the left-hand side of the

.5. Migration Decision Function

reaction. While the chemistry of an agent appears similar to a
T+Y o Y classifier system at first glance, it is only superficially so.
X+Y =T Firstly, the agent chemistry is fixed and no Bucket
T+Y - Z . . e
X+Y o X+T Brigade algorithm [11, for example] or similar
X+T - X+2 X+Y o W+T apportionment of credit scheme is intended to operate in
X+T oW +2Z order to modify the chemistry. An agent's chemistry is

Similarly, reaction types 3, 4 and 5 as is shown in thefixed having been engineered in order to achieve a given
example reactions above may represent exothermicfunction within the mobile agent subsumption
reactions. In these reactions T once again represents thgrchitecture. Secondly, an agent operates continuously and
energy generated by the reaction, i.e. it appears on theill reactions operate in parallel in order to modify the
right-hand side of the equation. local environment. This is quite different from the way in

Changing thdocal temperature of the system changes which message processing occurs within a classifier
the degree to which swarms interact. Low temperaturessystem. Upon arrival at the node, an agent registers
see little interaction between swarms whereas highinterests in particular chemicals. Chemical concentration
temperatures see high levels of interaction. It should bechanges caused by agent chemical reactions are
stressed that temperature is a local characteristic of theommunicated to the local environment for which the
environment and no attempt is made to make thisagent has emitters. These concentration changes are then
information globally available. The temperature chemical automatically communicated to other agents resident at
can be thought of as a local control parameter limiting or the node as a result of their registration for notification of
promoting agent interaction, i.e. providing inhibitory or chemical concentration changes. Once the agent has
excitatory stimuli within the multi-agent system. performed its task on a particular node; e.g. measurement

In our system, all agents are provided with a of quality of service of a connection or simply sensing the
temperature receptor by default, thereby being able toconcentration of a specific chemical, the MDF is invoked
sense the local temperature. However, this need not be thiy order to determine the node to migrate to in the
case, one could imagine a design where internal anchetwork. No fixed residency time is assumed; some agents
external agent temperatures were maintained. will remain at a node for long periods of time, others will

not.



4. Scenario specific destination. The metaphor used to describe the
behavior of explorer agents is that of ants foraging for

As an example of a multi-swarm interacting system food. Explorer ants possess a single emideaiid three

moving on a network we have chosen to investigate routed ©CePIOrS 4 = =;). The emitter and recepterare both
finding, maintenance and fault detecton in a tuned to a single chemical or phero_mon_e (T). The receptor
communications network. In our environment we have aZ IS used to measure the costs of links in the network (C).
completely distributed view of the network. Such a view is The receptok; is used to detect the perceived quality or
highly desirable as it makes management of thesereliability associated with links in the network (Q).
networks easier and scalable. The explorer agent has two distinct modes of operation.

In our system, drawn from the domain of transmission When moving towards the requested destination, the
networks, we are attempting to create connectionsemitter is turned off and the receptors are used to detect
between nodes in the network, monitor them for quality of the — connection-specific chemical and link costs
service degradation and diagnose faults when they occuriéspectively. The agent's memory is used to store the links
It is assumed, and this can be the case, that a networlfaversed by the agent. When moving back towards the
manager does not exist and so no global view of thesource node having reached the required destination, the
network is maintained. Consequently, a distributed routereceptors are turned off and the emitter is turned on. A
finding solution as represented by the Ant Search class ofingle chemical reaction)(is defined for the explorer
algorithms is a good candidate for route finding. agent. This reaction allows for the generation of the

To date, three applications of the ant metaphor in thepheromone used to reinforce an emerging path. tpe
domain of routing have been documented [22] (used inused by the agent is defined by a series of equations that
this paper), [18] and [8]. The work reported in [18] specify the probability with which a given link will be
embraces routing in the circuit switched networks while used for agent migration. The probability with which an
[8] deals with packet switched networks. Both [18] and explorer agent (k) chooses a node j to move to when
[8] propose the control plane as the domain in which theircurrently at the'i node at time t is given by:
systems would most likely operate. Di Caro and Dorigo _ Oy - .
[8], in particular, provide compelling experimental  Pik (© = [Tij OTCAD] E[Qijk O/ Ni(9)
evidence, based upon simulation, as to the utility of L (H=y. ) . O~ B y
AntNet in the network routing problem domain by Nik(® % 8(S(')'Tabl\k)n'Jk(t)] [0 r’z‘[Q'Jk ®]
comparing ant-based routing with the current and wherea, 3 andy are control constants and determine
proposed routing schemes used in NSFNET. The scenarithe sensitivity of the search to pheromone concentration,
described here is somewhat different and applies to dink cost and component quality respectively, il simply
management context such as |s_foynd in a Synchronous, normalization factor that makes;,p () a true
Optical Network (SONET) transmission network. o . ) |

For the context of this paper, we are interested in prqbabll|ty. S(i) is the set Qf integers, {n} such t_hat there
forming a connection between a source and one or mor&XISts & link between th€ and i’ nodes. Tik® is the
destinations for the purpose of creating a link in a logical quantity of pheromone present on the link between'the i
network. It should be noted that this path may be and [" nodes for the 'k agent at time t. C(i,j) is the cost
protected, i.e. two node and link diverse paths may existassociated with the link between tfeaind | nodes. (ﬁk

between a given source and destination. This (possiblyy) is the quality or reliability measure associated with the

protected) path, in turn, can be used as a resource, a linkynk and the ' node for the & agent at time t. Tal|)<u's the

in the next logical layer. ] o
list of edges traversed by th& kgent. The C function is

meant to represent the cost to the user for consuming
bandwidth on a given link while the Q function represents

the confidence that we have in the various components

In our system we have three agent classes related igyolyed in the connection being able to transport data
route finding, one class concerned with connection effectively.

monitoring and one class which has the function of \yhen ‘explorer agents retun to the source node, a
detecting _network poor qual|_ty of service conditions. yeacision is taken as to whether a path has emerged.
These will now b_e (_Jlescnbed n _terms of the Essentially, if a given percentage of the last n agents have
(€ R .7D37. ) formalism introduced earlier. followed a single path then path emergence is considered

The three agent classes related to route finding areg have occurred. Once emerged, an allocator agent is sent
explorers, allocators and deallocators. The function of anjntg the network in order to create the connection.

explorer agent is to find a path from a given source to a

4.1. Agent Classes



The allocator agent has no emitters or receptors. It has anonitoring agent has a simpley that simply pops the
simple memory that stores the route that has emerged. Affirst entry from the list of links used in the route that is
allocator operates in two modes: forward and backward.stored in memory.

The allocator agent has a simplg that simply pops the The final agent type in the current system design is the
first entry from the list of links used in the route that is fault detection agent. Fault detection agents circulate
stored in memory. The agent allocates resources for thehrough the network and monitor the g-chemical

connection at each node in forward mode. In backwardconcentrations on nodes and links. They have a single
mode the allocator performs no action at each node. receptor £) and no emitters. Fault detection agents do not

A deallocator agent has an identic8l @€ ¢ #D7.4) have an associated chemistry; i.e. they are merely
description to that of an allocator agent. The only observers of network state. They associated with fault
difference between the two agent types is the actiondetection agents is probabilistic in nature and is given by
performed at each node when in forward mode. A the equation:
deallocator agent releases resources in forward mode in p;(t) = Q(i,j) / Z Q(i,k) for f% of the time and random
contrast to the action performed by the allocator agent angtherwise.
is sent when confidence in the existing route falls below a Random migrations are made for (100-f)% of the time
given threshold, the connection is no longer required orin order to ensure that the entire network is reached in
the route is no longer viable. This might be due to reasonable time. A probabilistic choice, based upon Q
component failure, for example. values, is made for f% of the time in order to revisit parts

Further details regarding the connection allocation of the network that are experiencing poor quality of
algorithm, explorer, allocator and deallocator agent service. It should also be noted that oscillation between
behaviors can be found in [22]. two high Q components is explicitly prevented, i.e. a fault

Evaporator agents also circulate within the network. detection agent cannot return to a previously visited
The function of these agents is to evaporate chemicahetwork element for t migrations. This list of tabu
concentrations relating to connection finding. They are elements is stored in agent memory.
equipped with a single receptor capable of sensing all The function of a fault detection agent is to observe
connection-related chemicals. They implement a type onecomponents with high Q values. When the observed Q
reaction in order to effect chemical evaporation. value exceeds a threshold value, the agent initiates

Evaporator agents are required in order to ensure that weliagnostic activity by executing rules associated with
do not "greedily" choose the first path found but allow a

balance of "exploration and exploitation" to occur in route
finding. Evaporation agents are examples of agents where
the "don't care" symbol is used in the emitter/receptor ) ) ) )
description. Evaporator agents have «a# that allows A S_malltglk S|m_ulat|on ha_ls b_een b_unt for th_e scenario
them to cycle through all nodes in the network in a _descn_bed in se<_:t|0n 4._Th|s simulation is being used to
periodic fashion. mvestlgat_e the interaction of the many parameters that
Explorer agents continue to search for better rOutescharacterlze the system; e.g. reaction rates, number of

through the network even after a connection has been setgents, agent generati(_)n frequency and several others. .
up. Also, once set up, the end-to-end quality of service forb A Java-bj\sgd mobile code mfr;;\_structure [20’217]1_'*?
the connection is monitored from the source node. WhenP€iNg extended to support our architecture, see [24]. The

significant changes in quality of service are observed, a/1ew pre_sented in [3] is that network e'?‘me”t? of the
monitoring agent is sent out into the network in order to future_ will be Java-enab_led a_md that Java_ IS an important
modify the Q values for the components used in theenabllng technology for |ntell|ger_1t and active networks o_f
connection. Monitoring agents have either one receptorthe future. The Perpet_uum_ Mobile Pro_cur_a (P.MP) to_oII_<|t
has components for migrating, authenticating, instantiating

(=) or one emitter ). If the quality of service of the ) ; :
. . . . and running mobile agents and provides a number of
connection has increased, the monitoring agent with a

: . . . “communication mechanisms for local and remote agent
receptor is sent. If the quality of service of the connection o . ! .
. ; . communication. The PMP toolkit defines a Virtual
has decreased, an agent with an emitter is sent. Th .
L . . " : anaged Component (VMC) that forces mobile agents to
monitoring agent's emitter generates the "quality of

- . . . : . _talk to managed resources indirectly. In our system, the
service" chemical, or g-chemical, using a single chemical :

. : AN . . VMC is used to access network component resources and
reaction in situations where quality of service has

e . to store chemicals and their concentrations. A simple
decreased and evaporates existing concentrations of . : . ; e
. : i L ictionary is being used for this purpose and a 'notification
chemical when quality of service has significantly . . . . :
of concentration change' service is provided by an

improved. The receptor senses the g-chemical. Theobserver/observable mechanism.

Implementation



6. Results and Discussion Hill climbing in the space of g-chemical as the primary
strategy for fault localization leads the fault detection

agent to 'zero in' on faulty components far more quickly
‘t?an random search. Consider the situation shown in
igure 2. Imagine that there is a single fault detection

The authors' research [22, 24] provides experimental
evidence that the basic system described in section 4 ca

effectively compute routes and plan connections in aa ent bresent at A. If we allow miaration based onlv on d-
network. While only simulated results are available, the gent p s gr y q.
chemical concentration, the agent is forced to move to E;

system has demonstrated that routing solutions to thel e. the detection agent reaches the faulty node in a single
point-to-point, point-to-multi-point and protected path = 9 y 9

problems (a problem related to shortest Hamiltonian move. Consider random migration as an alternative policy.

: . . Using this policy, the agent has only a"\f&obability of
cycle) for a variety of graph topologies can be effectivel . . :
czmp)uted The ?/esulgtls 51 [22p] ingicate that 15% feweyr reaching E directly and has a far higher expected number
blocked .connections are typically observed when of moves before it reaches the faulty component. We have

comparing standard shortest path routing to the ant-Iikeﬁéﬂigmsv?ttﬁda V:I/g:ie? r(l)l;rg?)irne?:ftiosnmagttg:igh:mc(jlg:voe
agent routing described. ) y P

M ~limi th
Some care has to be taken in the choice of syste ound the hill climbing strategy to take less than"164

parameters. Our research is ongoing in the area of self-he _number of moves that a random strategy would
adaptation of system parameters; e.g. chemical and Iinl{e\(j\l;r']r.?' h imol | d ibed b
cost sensitivities and early results for this activity are demolnestra':es th:mirljite ofi)ﬁerm?ci\l int;f‘grrler?ce —ailn(?[xies
reported in [24]. We are investigating the sensitivity of X y e S

our swarm systems to the number of agents engaged i asE C(Tgstt:ucnve ;jar;]d a h|II_cI|rr|1b|r:jg migration strhategy,
problem solving as well as considering the effects of:3 S 3” e noted that a_5|mphe ﬁtTgt'?n (;nec ar;lslm
noise; i.e. unreliable agent knowledge. ased upon a concentration threshold leads to false

Ao comnecton quaiy of sence changes, comecions{210%S% e e, nereor, Ivesigatn e uee o
are dropped and new routes quickly found with traffic 9 9

apdy mning aviay Tom region of the netork Trat ST 98 e s, e i s, o
have proven unreliable. Further, the fault detection agent q

: . : -~ links represents state. Referring to Figure 2 once again,
detecting g-chemicals from multiple connection
monitoring  agents, quickly identified the faulty the state vector for node E would be (2,1,0,0,1,1,1), where

components within the network. A diagnostic example is we start with the_ concentration Of q-cher_nlcal on the node
shown in Figure 2. followed py the links beglnnlng_wnh_ the link from A to E

In Figure 2, two connections are defined, one from A to ?er;c:nrgovéngte'rr; ?S ('ilhoed?évésuelt g:‘rf/}\;:r:g[ﬂ.erlzggr(:ggt(i:\l;etgc::)erw
B and another from C to D. Both connections experience 9 sy

poor quality of service and use monitoring agents to drop.reSUIting frqm diagnosis improves the state of the SVS‘e”_‘?
g-chemical in the network. The numeric labels on the "€ q-chemlcal concentrations are red_uc_ed. NO. change in
nodes and edges represent the concentrations of qg-ch_emmal concentration 'mp"es a mlsd|agn05|s_. R_esults
chemical for that component. As can be seen in Figure 2,of this work will be communicated in a future publication.
node E sees twice the g-chemical as it is the common )

element for the two paths. The fault detection agent/- Conclusions and Future Work

therefore initiates diagnostic activity on this component.

Further details on the use of this architecture and its This paper has provided a formal description of a multi-

implementation for diagnosis can be found in [23]. agent system that relies on Swarm Intelligence and, in
particular, trail laying behavior in order to solve problems
D in a communications network. We have demonstrated how

fault detection can arise as a result of trail laying behavior
of simple agents and we have proposed the use of ideas
from Subsumption as guiding the design of multi-swarm
systems.

While the ideas presented in this paper are conceptually
appealing, considerable work remains to analyze the
utility of the approach. A great deal of experimentation is
currently underway. A theoretical investigation has also
Figure 2: Example Diagnosis begun. It is hoped that results based on Holland's basic
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