
Towards Multi-Swarm Problem Solving in Networks

Tony White, Bernard Pagurek
Systems and Computer Engineering, Carleton University,

1125 Colonel By Drive, Ottawa, Ontario, Canada K1S 5B6
email: {tony, bernie}@sce.carleton.ca

Abstract
This paper describes how multiple interacting swarms of
adaptive mobile agents can be used to solve problems in
networks. The paper introduces a new architectural
description for an agent that is chemically inspired and
proposes chemical interaction as the principal
mechanism for inter-swarm communication. Agents
within a given swarm have behavior that is inspired by
the foraging activities of ants, with each agent capable of
simple actions and knowledge of a global goal is not
assumed. The creation of chemical trails is proposed as
the primary mechanism used in distributed problem
solving arising from self-organization of swarms of
agents. The paper proposes that swarm chemistries can
be engineered in order to apply the principal ideas of the
Subsumption Architecture in the domain of mobile agents.
The paper presents applications of the new architecture
in the domain of communications networks and describes
the essential elements of a mobile agent framework that is
being considered for its implementation.

1. Introduction

The notion of complex collective behavior emerging
from the behavior of many simple agents and their
interactions is central to the ideas of Artificial Life [15].
Nature provides us with several examples of social
systems comprising individuals exhibiting simple
behaviors while the society exhibits complex problem
solving capabilities.

Naturally occurring social systems provide considerable
inspiration for artificial systems that display emergent
behavior. Such systems promise to provide guiding
principles for, and engineering solutions to, distributed
systems management problems found, for example, in
communications networks.

In this paper, we describe the essential principles of
Swarm Intelligence (SI) and, in particular, how an

understanding of the foraging behaviors of ants [1] has led
to novel, distributed control and management in
communications networks.

This paper consists of six subsequent sections. In the
next section, a brief overview of Swarm Intelligence and
Ant Colony search is presented. The paper continues with
a presentation of our multi-swarm architecture. The
following section describes a scenario drawn from the
communications domain where a multi-swarm architecture
has been used. Implementation issues, both simulation and
using a mobile agent toolkit, are then briefly described. A
summary of our findings is then provided and the paper
ends with conclusions and future work.

2. Swarm Intelligence

Swarm Intelligence [2] is a property of systems of
unintelligent agents of limited individual capabilities
exhibiting collectively intelligent behavior. An agent in
this definition represents an entity capable of sensing its
environment and undertaking simple processing of
environmental observations in order to perform an action
chosen from those available to it. These actions include
modification of the environment in which the agent
operates. Intelligent behavior frequently arises through
indirect communication between the agents, this being the
principle of stigmergy [12]. It should be stressed,
however, that the individual agents have no explicit
problem solving knowledge and intelligent behavior arises
(or emerges) because of the actions of societies of such
agents.

Individual ants are behaviorally simple insects with
limited memory and exhibiting activity that has a
stochastic component. However, collectively ants manage
to perform several complicated tasks consistently well.

In the ant problem solving behavior documented; e.g.
[14], two forms of stigmergy can be inferred.
Sematectonic stigmergy involves a change in the physical
characteristics of the environment. Ant nest building is an
example of this form of communication in that an ant

observes a structure developing and adds to it. The second
form of stigmergy is sign-based. Here, something is
deposited in the environment that makes no direct
contribution to the task being undertaken but influences
subsequent task related behavior.

Sign-based stigmergy is very well developed in ants.
Ants foraging for food lay down quantities of pheromone
(a highly volatile hormone) marking the path that it
follows with a trail of the substance. An isolated ant
moves essentially at random but an ant encountering a
previously laid trail will detect it and decide to follow it
with a high probability and thereby reinforce it with a
further quantity of pheromone. The collective behavior
which emerges is a form of autocatalytic behavior where
the more the ants follow the trail the more likely they are
to do so.

The use of ant foraging behavior as a metaphor for a
problem-solving technique is generally attributed to
Dorigo [9]. It is considered central to our work. However,
since Dorigo's early work on the Travelling Salesman
Problem (TSP) and Asymmetric TSP, the technique has
been applied to several other classes of problem. These
include the Quadratic Assignment Problem (QAP) [16,
22], graph coloring [7], vehicle routing [6] and, as we
shall see in the later sections, communications network
routing.

3. Agent System Architecture

In our system, ant-like agents solve problems by
moving over the nodes and links in a network and
interacting with chemical messages deposited in that
network. Chemical messages have two attributes, a label
and a concentration. These messages are the only medium
of communication used both between swarms and
individual swarm agents. Data and chemicals are
considered synonymous in our system.

Agents in our multi-swarm system are of limited
intelligence; i.e. they belong to the 'lightweight' category
of agents, and are capable of only simple behaviors. Such
agents are reactive in nature and have the ability to sense
and modify their environment locally. Our agents stand in
stark contrast to agents supporting the Belief-Desire-
Intention (BDI) model [19]. However, we freely
acknowledge the desirable nature of hybrid reactive-
reflective architectures such as the Touring Machine
architecture [10] and, in fact, our lightweight agents
interact with stationary agents on platforms used for
management and planning in our networks. Having the
capability for mobility, ant-like agents are potentially able
to modify local environments on network elements (or
components) in the entire network that they inhabit.

Agents communicate locally, when co-resident on a node
and only through their local chemical environment.

Agents in our system can be described by the tuple,
$=�(�5�&�0')�P�. They have a uniform architecture
consisting of five components:

• emitters ((),
• receptors (5),
• chemistry (&),
• a migration decision function (0')),
• memory (P)

3.1. Emitters

The emitters associated with an agent are used to
generate chemicals that are deposited where the agent is
currently located. Using ants and their foraging behavior
as an example, pheromones are laid down as the ant
returns from searching for a source of food. Emitters have
an associated Emitter Decision Function (EDF) which is
used to decide the rate of production of an emitted
chemical. The emitted chemical is digitally encoded,
having an associated pattern that uses the alphabet {1, 0,
#}. This encoding has been inspired by those used in
Genetic Algorithms [11] and Classifier Systems [13]. The
hash symbol in the alphabet allows for matching of both
one and zero and is, therefore, the "don't care" symbol. A
chemical encoding including one or more "don't care"
symbols can be thought of as a generalized chemical or an
instance of several classes of chemical.

The function of an emitter is to alter the local
environment inhabited by the agent. Using the above
alphabet it is possible, for example, for an agent to
generate a digital chemical with the encoding 1#01 which
will be sensed by an agent with a 1101 receptor and by an
agent with a 1001 receptor.

An emitter can be either on or off depending upon its
internal state; i.e. the concentrations of chemicals stored
within agent memory.

3.2. Receptors

The receptors associated with an agent are used to sense
chemicals that are present in the agent's local environment
and chemical changes that occur in it. Using, once again,
ants and their foraging behavior as an example,
pheromones are sensed by the ant as it searches for a
source of food. Receptors have an associated Receptor
Decision Function (RDF) that is used to determine the
sensitivity to the chemical in question and it is possible to
associate actions with a receptor. The sensed chemical is
digitally encoded, once again having an associated pattern
that uses the alphabet {1, 0, #}. It is possible, therefore, to

engineer wide spectrum sensors that detect many
chemicals. For example, a receptor engineered to sense
the encoding 10## will be able to detect the chemicals
having the 1000, 1001, 1010 or 1011 encoding. Generally,
a receptor having n positions in the encoding with the
hash symbol will be able to detect 2n chemicals. Like an
emitter, a receptor can be either on or off depending upon
its internal state.

3.3. Chemistry

The chemistry associated with an agent is the set of
chemical reactions that can occur within the agent. While
the reaction set is limited to, at most, two reactants or
products, larger reactions can be synthesized by building
chains of these five types of reaction. There are five types
of reaction that can occur within an agent. These are
shown below.

The first reaction can be thought of as evaporation of a
chemical. An example of such a reaction would be the
evaporation of pheromone from an ant trail. The second
type of reaction is the catalytic breakdown of a chemical,
with Y representing the catalyst. An example of such a
reaction might be a parasitic interaction between two
types of agent such as could be observed when one ant is
trying to throw another 'off the scent' when competing for
finding a path to a given food source. Another example,
this time from the telecommunications domain, is the
scenario where an agent representing higher priority
traffic reduces the concentrations of lower priority traffic'
pheromones (that are used to mark a given route) in order
to have the lower priority traffic find an alternate route.
The third reaction type represents the fusion of two
chemicals and it is this type of reaction that we envisage
being used to communicate information from one layer of
a multi-swarm hierarchy to another. This type of reaction
provides a mechanism which multi-swarm systems could
use to implement Subsumption Architectures [4, 5]. This
is shown diagrammatically in Figure 1. Figure 1 shows
two connection monitoring agents that have quality of
service monitoring for a specific connection as their
primary responsibility. They detect decreasing quality of
service for a shared network resource on, say, a link. As a

result, they lay down quantities of X and Y that indicate
an increasing level of dissatisfaction with the quality of
the connection. A diagnostic agent encoding a type three
reaction has one or more receptors that allow for the
detection of X and Y, allowing for the generation of Z.

The fourth reaction type represents a catalytic reaction
where one chemical is converted to another but only in the
presence of a mediating chemical, the catalyst. This type
of reaction can be thought of, in computational terms, as
providing a conditional construct where, only if we have a
certain confidence in a given state can we perform a
specific transformation of one chemical to another. The
fifth reaction type is the most general in that the two
reactants are converted to two products that are distinct
from the reactants. Depending on whether a given
chemical is part of one swarm layer or the swarm layer
above it, the five types of chemical reaction can be
considered as providing both inhibitory and excitatory
stimuli to the upper swarm layer. For example, Figure 1
can be viewed as providing an excitatory stimulus to the
fault detection swarm layer considered being above the
connection-monitoring layer within our multi-swarm
architecture.

All of the reactions use digitally encoded chemicals, i.e.
all chemicals use the {1, 0, #} alphabet. Hence, reactions
of the form below are supported1.

The above reaction, an example of a type two reaction,
allows for the catalytic breakdown of the 011 chemical to
occur via two catalysts, namely 110 or 100. Unification
occurs between chemicals on a bit-by-bit basis and is
carried through from reactants to products, i.e. the "don't
care" symbol in a given position within two reactants or
between reactants and products can be either 1 or 0 in a
single reaction. Using the above reaction as an example,
four possibilities exist. These are shown on the next page.

1 Note that the concentrations of the two chemicals have been assumed
to be one in this example.

ZWYX

ZXYX

ZYX

YYX

nothingX

+→+
+→+

→+
→+

→ ''

0#10#1011 →+

Diagnostic A gent

Connection M onitoring Agent A Connection M onitoring Agent B

X
Y

Z

M onitoring agents A and B lay down increasing quantities of pherom one
w ith decreasing quality of service on a given link. D iagnostic agent
senses increasing levels and initiates diagnostic activ ity when threshold
exceeded.

Figure 1: Type 3 Reaction Example

The first two reactions are implied, with the "don't care"
symbol being unified to 1 and 0 respectively. However,
the latter two reactions are not implied, as in both
reactions the "don't care" symbol in the second position
has to unify to both 1 and 0.

All of the reaction types have an associated reaction
rate, i.e. a measure that determines the speed with which
the reaction can occur. Reaction rates are temperature
dependent, with the dependence characterized by
Arrhenius' equation. Temperature and energy are
considered to be essentially the same in our system.
Consequently, a unique chemical encoding that can be
generated by chemical reactions (as any other) has been
chosen to represent temperature. By using the same
representation for energy and chemicals, endothermic and
exothermic reactions can be used to cool and heat the
system respectively. Endothermic reactions are
characterized by a decrease in temperature and, as such,
reaction types 2, 3, 4 and 5 can represent this type of
reaction. This is shown in the example reactions below,
where T is meant to represent the energy consumed by the
reaction, i.e. it appears on the left-hand side of the
reaction.

Similarly, reaction types 3, 4 and 5 as is shown in the
example reactions above may represent exothermic
reactions. In these reactions T once again represents the
energy generated by the reaction, i.e. it appears on the
right-hand side of the equation.

Changing the local temperature of the system changes
the degree to which swarms interact. Low temperatures
see little interaction between swarms whereas high
temperatures see high levels of interaction. It should be
stressed that temperature is a local characteristic of the
environment and no attempt is made to make this
information globally available. The temperature chemical
can be thought of as a local control parameter limiting or
promoting agent interaction, i.e. providing inhibitory or
excitatory stimuli within the multi-agent system.

In our system, all agents are provided with a
temperature receptor by default, thereby being able to
sense the local temperature. However, this need not be the
case, one could imagine a design where internal and
external agent temperatures were maintained.

3.4. Memory

The memory associated with an agent stores the
chemicals and their concentrations that are held internally
to the agent. It is the holder of the state of the agent.
Symbolic information can also be stored in memory;
however, the agent alone may use this type of information.
These types of agent cannot communicate such
information to the environment. Only chemicals for which
emitters or receptors are not provided are stored within
agent memory.

3.5. Migration Decision Function

The Migration Decision Function (MDF) is a function
or rule set that is used to determine where an agent should
visit next. The MDF typically uses chemical and link cost
information in order to determine the next hop in its
journey through the network or may simply follow a hard-
coded route through the network. This latter migration
strategy is often referred to as an itinerary in the mobile
agent literature. Alternatively, when migrating, the agent
may use the default migration node available to it.

3.6. Agent Operation

While the chemistry of an agent appears similar to a
classifier system at first glance, it is only superficially so.
Firstly, the agent chemistry is fixed and no Bucket
Brigade algorithm [11, for example] or similar
apportionment of credit scheme is intended to operate in
order to modify the chemistry. An agent's chemistry is
fixed, having been engineered in order to achieve a given
function within the mobile agent subsumption
architecture. Secondly, an agent operates continuously and
all reactions operate in parallel in order to modify the
local environment. This is quite different from the way in
which message processing occurs within a classifier
system. Upon arrival at the node, an agent registers
interests in particular chemicals. Chemical concentration
changes caused by agent chemical reactions are
communicated to the local environment for which the
agent has emitters. These concentration changes are then
automatically communicated to other agents resident at
the node as a result of their registration for notification of
chemical concentration changes. Once the agent has
performed its task on a particular node; e.g. measurement
of quality of service of a connection or simply sensing the
concentration of a specific chemical, the MDF is invoked
in order to determine the node to migrate to in the
network. No fixed residency time is assumed; some agents
will remain at a node for long periods of time, others will
not.

ZWTX

ZXTX

ZYT

YYT

+→+
+→+

→+
→+

TWYX

TXYX

TYX

+→+
+→+

→+

110100011

100110011

100100011

110110011

→+
→+
→+
→+

4. Scenario

As an example of a multi-swarm interacting system
moving on a network we have chosen to investigate route
finding, maintenance and fault detection in a
communications network. In our environment we have a
completely distributed view of the network. Such a view is
highly desirable as it makes management of these
networks easier and scalable.

In our system, drawn from the domain of transmission
networks, we are attempting to create connections
between nodes in the network, monitor them for quality of
service degradation and diagnose faults when they occur.
It is assumed, and this can be the case, that a network
manager does not exist and so no global view of the
network is maintained. Consequently, a distributed route
finding solution as represented by the Ant Search class of
algorithms is a good candidate for route finding.

To date, three applications of the ant metaphor in the
domain of routing have been documented [22] (used in
this paper), [18] and [8]. The work reported in [18]
embraces routing in the circuit switched networks while
[8] deals with packet switched networks. Both [18] and
[8] propose the control plane as the domain in which their
systems would most likely operate. Di Caro and Dorigo
[8], in particular, provide compelling experimental
evidence, based upon simulation, as to the utility of
AntNet in the network routing problem domain by
comparing ant-based routing with the current and
proposed routing schemes used in NSFNET. The scenario
described here is somewhat different and applies to a
management context such as is found in a Synchronous
Optical Network (SONET) transmission network.

For the context of this paper, we are interested in
forming a connection between a source and one or more
destinations for the purpose of creating a link in a logical
network. It should be noted that this path may be
protected, i.e. two node and link diverse paths may exist
between a given source and destination. This (possibly
protected) path, in turn, can be used as a resource, a link,
in the next logical layer.

4.1. Agent Classes

In our system we have three agent classes related to
route finding, one class concerned with connection
monitoring and one class which has the function of
detecting network poor quality of service conditions.
These will now be described in terms of the
((�5�&�0')�P) formalism introduced earlier.

The three agent classes related to route finding are
explorers, allocators and deallocators. The function of an
explorer agent is to find a path from a given source to a

specific destination. The metaphor used to describe the
behavior of explorer agents is that of ants foraging for
food. Explorer ants possess a single emitter (H) and three
receptors (U�� U�� U�). The emitter and receptor U� are both
tuned to a single chemical or pheromone (T). The receptor
U� is used to measure the costs of links in the network (C).
The receptor U� is used to detect the perceived quality or
reliability associated with links in the network (Q).

The explorer agent has two distinct modes of operation.
When moving towards the requested destination, the
emitter is turned off and the receptors are used to detect
the connection-specific chemical and link costs
respectively. The agent's memory is used to store the links
traversed by the agent. When moving back towards the
source node having reached the required destination, the
receptors are turned off and the emitter is turned on. A
single chemical reaction (F) is defined for the explorer
agent. This reaction allows for the generation of the
pheromone used to reinforce an emerging path. The PGI

used by the agent is defined by a series of equations that
specify the probability with which a given link will be
used for agent migration. The probability with which an
explorer agent (k) chooses a node j to move to when
currently at the ith node at time t is given by:

pijk (t) = [Tijk(t)]α[C(i,j)] -ß[Qijk (t)]-γ / Nik(t)

Nik(t)=Σj ε(S(i)-Tabuk)[Tijk(t)]α[C(i,j)] -ß[Qijk (t)]-γ

where α, β and γ are control constants and determine
the sensitivity of the search to pheromone concentration,
link cost and component quality respectively. Nk

is simply

a normalization factor that makes pijk (t) a true

probability. S(i) is the set of integers, {n} such that there
exists a link between the ith and nth nodes. Tijk(t) is the

quantity of pheromone present on the link between the ith

and jth nodes for the kth agent at time t. C(i,j) is the cost
associated with the link between the ith and jth nodes. Qijk
(t) is the quality or reliability measure associated with the
link and the jth node for the kth agent at time t. Tabuk is the

list of edges traversed by the kth agent. The C function is
meant to represent the cost to the user for consuming
bandwidth on a given link while the Q function represents
the confidence that we have in the various components
involved in the connection being able to transport data
effectively.

When explorer agents return to the source node, a
decision is taken as to whether a path has emerged.
Essentially, if a given percentage of the last n agents have
followed a single path then path emergence is considered
to have occurred. Once emerged, an allocator agent is sent
into the network in order to create the connection.

The allocator agent has no emitters or receptors. It has a
simple memory that stores the route that has emerged. An
allocator operates in two modes: forward and backward.
The allocator agent has a simple PGI that simply pops the
first entry from the list of links used in the route that is
stored in memory. The agent allocates resources for the
connection at each node in forward mode. In backward
mode the allocator performs no action at each node.

A deallocator agent has an identical ((� 5� &� 0')�P)
description to that of an allocator agent. The only
difference between the two agent types is the action
performed at each node when in forward mode. A
deallocator agent releases resources in forward mode in
contrast to the action performed by the allocator agent and
is sent when confidence in the existing route falls below a
given threshold, the connection is no longer required or
the route is no longer viable. This might be due to
component failure, for example.

Further details regarding the connection allocation
algorithm, explorer, allocator and deallocator agent
behaviors can be found in [22].

Evaporator agents also circulate within the network.
The function of these agents is to evaporate chemical
concentrations relating to connection finding. They are
equipped with a single receptor capable of sensing all
connection-related chemicals. They implement a type one
reaction in order to effect chemical evaporation.
Evaporator agents are required in order to ensure that we
do not "greedily" choose the first path found but allow a
balance of "exploration and exploitation" to occur in route
finding. Evaporation agents are examples of agents where
the "don't care" symbol is used in the emitter/receptor
description. Evaporator agents have an PGI that allows
them to cycle through all nodes in the network in a
periodic fashion.

Explorer agents continue to search for better routes
through the network even after a connection has been set
up. Also, once set up, the end-to-end quality of service for
the connection is monitored from the source node. When
significant changes in quality of service are observed, a
monitoring agent is sent out into the network in order to
modify the Q values for the components used in the
connection. Monitoring agents have either one receptor
(U

�) or one emitter (H�). If the quality of service of the
connection has increased, the monitoring agent with a
receptor is sent. If the quality of service of the connection
has decreased, an agent with an emitter is sent. The
monitoring agent's emitter generates the "quality of
service" chemical, or q-chemical, using a single chemical
reaction in situations where quality of service has
decreased and evaporates existing concentrations of q-
chemical when quality of service has significantly
improved. The receptor senses the q-chemical. The

monitoring agent has a simple PGI that simply pops the
first entry from the list of links used in the route that is
stored in memory.

The final agent type in the current system design is the
fault detection agent. Fault detection agents circulate
through the network and monitor the q-chemical
concentrations on nodes and links. They have a single
receptor (U�) and no emitters. Fault detection agents do not
have an associated chemistry; i.e. they are merely
observers of network state. The PGI associated with fault
detection agents is probabilistic in nature and is given by
the equation:

 pij(t) = Q(i,j) / Σk Q(i,k) for f% of the time and random
otherwise.

Random migrations are made for (100-f)% of the time
in order to ensure that the entire network is reached in
reasonable time. A probabilistic choice, based upon Q
values, is made for f% of the time in order to revisit parts
of the network that are experiencing poor quality of
service. It should also be noted that oscillation between
two high Q components is explicitly prevented, i.e. a fault
detection agent cannot return to a previously visited
network element for t migrations. This list of tabu
elements is stored in agent memory.

The function of a fault detection agent is to observe
components with high Q values. When the observed Q
value exceeds a threshold value, the agent initiates
diagnostic activity by executing rules associated with U�.

5. Implementation

A Smalltalk simulation has been built for the scenario
described in section 4. This simulation is being used to
investigate the interaction of the many parameters that
characterize the system; e.g. reaction rates, number of
agents, agent generation frequency and several others.

A Java-based mobile code infrastructure [20, 17] is
being extended to support our architecture, see [24]. The
view presented in [3] is that network elements of the
future will be Java-enabled and that Java is an important
enabling technology for intelligent and active networks of
the future. The Perpetuum Mobile Procura (PMP) toolkit
has components for migrating, authenticating, instantiating
and running mobile agents and provides a number of
communication mechanisms for local and remote agent
communication. The PMP toolkit defines a Virtual
Managed Component (VMC) that forces mobile agents to
talk to managed resources indirectly. In our system, the
VMC is used to access network component resources and
to store chemicals and their concentrations. A simple
dictionary is being used for this purpose and a 'notification
of concentration change' service is provided by an
observer/observable mechanism.

6. Results and Discussion

The authors' research [22, 24] provides experimental
evidence that the basic system described in section 4 can
effectively compute routes and plan connections in a
network. While only simulated results are available, the
system has demonstrated that routing solutions to the
point-to-point, point-to-multi-point and protected path
problems (a problem related to shortest Hamiltonian
cycle) for a variety of graph topologies can be effectively
computed. The results in [22] indicate that 15% fewer
blocked connections are typically observed when
comparing standard shortest path routing to the ant-like
agent routing described.

Some care has to be taken in the choice of system
parameters. Our research is ongoing in the area of self-
adaptation of system parameters; e.g. chemical and link
cost sensitivities and early results for this activity are
reported in [24]. We are investigating the sensitivity of
our swarm systems to the number of agents engaged in
problem solving as well as considering the effects of
noise; i.e. unreliable agent knowledge.

As connection quality of service changes, connections
are dropped and new routes quickly found with traffic
rapidly moving away from regions of the network that
have proven unreliable. Further, the fault detection agent,
detecting q-chemicals from multiple connection
monitoring agents, quickly identified the faulty
components within the network. A diagnostic example is
shown in Figure 2.

In Figure 2, two connections are defined, one from A to
B and another from C to D. Both connections experience
poor quality of service and use monitoring agents to drop
q-chemical in the network. The numeric labels on the
nodes and edges represent the concentrations of q-
chemical for that component. As can be seen in Figure 2,
node E sees twice the q-chemical as it is the common
element for the two paths. The fault detection agent
therefore initiates diagnostic activity on this component.
Further details on the use of this architecture and its
implementation for diagnosis can be found in [23].

Figure 2: Example Diagnosis

Hill climbing in the space of q-chemical as the primary
strategy for fault localization leads the fault detection
agent to 'zero in' on faulty components far more quickly
than random search. Consider the situation shown in
Figure 2. Imagine that there is a single fault detection
agent present at A. If we allow migration based only on q-
chemical concentration, the agent is forced to move to E;
i.e. the detection agent reaches the faulty node in a single
move. Consider random migration as an alternative policy.
Using this policy, the agent has only a 1/3rd probability of
reaching E directly and has a far higher expected number
of moves before it reaches the faulty component. We have
experimented with a number of small graphs (10-20
nodes) with a variety of connection patterns and have
found the hill climbing strategy to take less than 1/4th of
the number of moves that a random strategy would
require.

While the simple example described above
demonstrates the utility of chemical interference – in this
case constructive – and a hill climbing migration strategy,
it should be noted that a simple detection mechanism
based upon a concentration threshold leads to false
diagnoses. We are, therefore, investigating the use of
Reinforcement Learning as a means of learning the correct
diagnosis for a network state. In these learning systems, a
vector of q-chemical concentrations on the node and its
links represents state. Referring to Figure 2 once again,
the state vector for node E would be (2,1,0,0,1,1,1), where
we start with the concentration of q-chemical on the node
followed by the links beginning with the link from A to E
and moving in a clockwise direction. Feedback to the
learning system is the result of whether corrective action
resulting from diagnosis improves the state of the system;
i.e. q-chemical concentrations are reduced. No change in
q-chemical concentration implies a misdiagnosis. Results
of this work will be communicated in a future publication.

7. Conclusions and Future Work

This paper has provided a formal description of a multi-
agent system that relies on Swarm Intelligence and, in
particular, trail laying behavior in order to solve problems
in a communications network. We have demonstrated how
fault detection can arise as a result of trail laying behavior
of simple agents and we have proposed the use of ideas
from Subsumption as guiding the design of multi-swarm
systems.

While the ideas presented in this paper are conceptually
appealing, considerable work remains to analyze the
utility of the approach. A great deal of experimentation is
currently underway. A theoretical investigation has also
begun. It is hoped that results based on Holland's basic

2
A

F

C

D

E

1

1

1

1

1

1

1

1
1

B

theorems on the calculus of symbol systems2 may well
provide guiding principles and insights for the design of
systems such as ours.

Acknowledgements

We would like to acknowledge the support of the
Telecommunications Research Institute of Ontario (TRIO)
and the National Science and Engineering Research
Council (NSERC) for their financial support of this work.

References

1. Beckers R., Deneuborg J.L. and Goss S., Trails and U-turns
in the Selection of a Path of the Ant Lasius Niger. In J.
theor. Biol. Vol. 159, pp. 397-415, 1992.

2. Beni G., and Wang J., Swarm Intelligence in Cellular
Robotic Systems, Proceedings of the NATO Advanced
Workshop on Robots and Biological Systems, Il Ciocco,
Tuscany, Italy, 1989.

3. Bieszczad, A. and Pagurek, B., Network Management
Application-Oriented Taxonomy of Mobile Code,
Proceedings of the IEEE/IFIP Network Operations and
Management Symposium NOMS'98, New Orleans,
Louisiana, February 1998.

4. Brooks, R.A., Achieving Artificial Intelligence Through
Building Robots, A.I. Memo 899, MIT A.I. Lab, 1986.

5. Brooks, R.A., Intelligence Without Representation,
Artificial Intelligence, Vol. 47, pp. 139-159, 1991.

6. Bullnheimer B., R.F. Hartl and C. Strauss, Applying the
Ant System to the Vehicle Routing Problem. 2nd
Metaheuristics International Conference (MIC-97), Sophia-
Antipolis, France, 1997.

7. Costa D. and A. Hertz, Ants Can Colour Graphs. Journal of
the Operational Research Society, 48, 295-305, 1997.

8. Di Caro G. and Dorigo M., AntNet: A Mobile Agents
Approach to Adaptive Routing. Tech. Rep. IRIDIA/97-12,
Université Libre de Bruxelles, Belgium, 1997.

9. Dorigo M., V. Maniezzo and A. Colorni, The Ant System:
An Autocatalytic Optimizing Process. Technical Report
No. 91-016, Politecnico di Milano, Italy, 1991.

10. Ferguson, I.A.,. On the Role of BDI Modelling for
Integrated Control and Coordinated Behavior in
Autonomous Agents. Journal of Applied Artificial
Intelligence, 9(4), 1995.

11. Goldberg, D., Genetic Algorithms in Search, Optimization,
and Machine Learning. Reading, MA: Addison-Wesley,
1989.

12. Grassé P.P., La reconstruction du nid et les coordinations
inter-individuelles chez Bellicoitermes natalenis et
Cubitermes sp. La theorie de la stigmergie: Essai
d'interpretation des termites constructeurs. In Insect
Societies, Vol. 6, pp. 41-83, 1959.

2 The authors would like to acknowledge the contribution of one of the
reviewers here.

13. Holland, J. H., Escaping Brittleness: the Possibilities of
General-Purpose Learning Algorithms applied to Parallel
Rule-Based Systems. In Machine Learning, an Artificial
Intelligence Approach, Volume II, edited by R.S.
Michalski, J.G. Carbonell and T.M. Mitchell, Morgan
Kaufmann, 1986.

14. Hölldobler B. and Wilson E.O., Journey to the Ants.
Bellknap Press/Harvard University Press, 1994.

15. Langton, C.G., Artificial Life, Proceedings of an
Interdisciplinary Workshop on the Synthesis and
Simulation of Living Things, Los Alamos, New Mexico,
Addison Wiley, 1987.

16. Maniezzo V., A. Colorni and M. Dorigo, The Ant System
Applied to the Quadratic Assignment Problem. Tech. Rep.
IRIDIA/94-28, Université Libre de Bruxelles, Belgium,
1994.

17. Schramm, C., Bieszczad, A. and Pagurek, B., Application-
Oriented Network Modeling with Mobile Agents,
Proceedings of the IEEE/IFIP Network Operations and
Management Symposium NOMS'98, New Orleans,
Louisiana, February 1998.

18. Schoonderwoerd R., O. Holland and J. Bruten, Ant-like
Agents for Load Balancing in Telecommunications
Networks. Proceedings of Agents '97, Marina del Rey, CA,
ACM Press pp. 209-216, 1997.

19. Shoham, Y., Agent-oriented programming. Artificial
Intelligence, 60(1):51-92, 1993.

20. Susilo, G., Bieszczad, A. and Pagurek, B., Infrastructure
for Advanced Network Management based on Mobile
Code, Proceedings of the IEEE/IFIP Network Operations
and Management Symposium NOMS'98, New Orleans,
Luisiana, February 1998.

21. Taillard E. and L. M. Gambardella, An Ant Approach for
Structured Quadratic Assignment Problems. 2nd
Metaheuristics International Conference (MIC-97), Sophia-
Antipolis, France, 1997.

22. White T., Pagurek B. and Oppacher F., Connection
Management using Adaptive Mobile Agents, Proceedings
of the International Conference on Parallel and Distributed
Processing Techniques and Applications (PDPTA'98), July,
1998.

23. White T., Bieszczad A., Pagurek B., Distributed Fault
Location in Networks Using Mobile Agents. Proceedings
of the Workshop on Intelligent Agents for
Telecommunications Applications (IATA ’98), July, 1998.

24. White T., Pagurek B and Oppacher F., ASGA: Improving
the Ant System by Integration with Genetic Algorithms.
Proceedings of the Symposium on Genetic Algorithms
(SGA '98), July, 1998.

